Two-loop Bhabha scattering with $N_f = 2$

Janusz Gluza

University of Silesia, Katowice

in collaboration with S. Actis, M. Czakon and T. Riemann

Loops and Legs, 23th April 2008, Sondershausen

Outline

- 2 NNLO Fermionic QED Corrections
- **3** Hadronic Contributions

The Luminosity Monitor

Luminosity of a collider depends on the machine and the beam: all is complicated (not mentioning errors estimation)

$$\frac{dN}{dt} = \mathcal{L}(t), \quad N = \sigma \int dt \mathcal{L}(t) = \sigma \mathcal{L}$$
(1)

better is to choose a well known process:

$$\mathcal{L} = rac{1}{\sigma_{Bhabha}} N_{Bhabha}$$

then we may determine any cross section in (1)

Kinematical Regions for Bhabha

Two regions where the Bhabha-scattering cross section is large and QED dominated

 $s = (p_1 + p_2)^2 = 4E^2 > 4m_e^2, \quad t = (p_1 - p_3)^2 = -4(E^2 - m_e^2)\sin^2\frac{\theta}{2} < 0$

- $\sqrt{s} \sim 10^2 \text{ GeV} \Rightarrow \text{small } \theta$
- SABS $\Rightarrow \mathcal{L}$ at LEP, ILC \sim a few degrees

- $\sqrt{s} \sim$ 1-10 GeV \Rightarrow large θ
- LABS $\Rightarrow \mathcal{L}$ at KLOE $\theta \sim 55^{\circ} - 125^{\circ}$

Experimental Precision on \mathcal{L}

$LABS \rightarrow 10^{-3}$	► KLOE $\Rightarrow \frac{\delta \mathcal{L}}{\mathcal{L}} _{exp} = 0.3\%$			
	$DA\PhiNE\text{-}VEPP\text{-}2M \Rightarrow 0.1~\%$			
$\frac{\text{SABS}}{\text{SABS}} \rightarrow 10^{-4}$	► LEP $\Rightarrow rac{\delta \mathcal{L}}{\mathcal{L}} _{\mathrm{exp}} = 0.03\%$			
	$ILC \ \Rightarrow rac{\delta \mathcal{L}}{\mathcal{L}} _{\mathrm{exp}} = 0.02(1)\%$ Giga-Z			

Status around 2004, from S. Jadach, hep-ph:0306083

Type of correction/error	LEPEWWG	hep-ph:9905235	update
Technical precision	-	– (0.03%)	0.03%
Missing photonic $\mathcal{O}(\alpha^2 L)$	0.10%	0.027% (0.013%)	0.013%
Missing photonic $O(\alpha^3 L^3)$	0.015%	0.015% (0.006%)	0.006%
Vacuum polarization	0.04%	0.040%	0.025%
Light pairs	0.03%	0.010%	0.010%
Z-exchange	0.015%	0.015%	0.015%
Total	0.11%	0.054% (0.055%)	0.045%

NNLO QED Corrections [Bern, Dixon, Ghinculov '00]

from Bern,Dixon,Ghinculov, arXiv:hep-ph/0010075

For practical applications

$$\sigma = \int d\Phi \, 2 \, \mathrm{Re} \left[\mathcal{M}^{2\mathrm{loop}} \, \cdot \, \mathcal{M}^{\mathrm{tree}*} \right]$$

Simplification $m_e = 0$

- + 2-scale problem s, t
- + simple result ln(x), Li_n(x) $x = -t/s = sin^{2}(\theta/2)$
- bad for MCs, $m_{\rm e} \neq 0$

- \Rightarrow Recompute with $m_e \neq 0$
- \Rightarrow Massive from massless

Progress since last Loops and Legs, 2006

Remarkable: photonic, $N_f = 1$, $N_f = 2$ NNLO corrections doubly (triply) cross-checked

NNLO photonic and fermionic $N_f = 1, 2$ topologies

- SE loop insertions (without photonic line) are so called fermionic diagrams, rest represents photonic.
- Closed fermionic loop can be muon, tau, top or light quarks.
- ▶ In general, box B5 is a 4-scale problem: $m_e, m_f, s, t(u)$.

Photonic NNLO massive QED Corrections

► Result of A. Penin confirmed by independent calculation [Becher-Melnikov '07]

Heavy Fermions with IR Matching excluding $\mathcal{O}(m_e^2/s)$

[Penin '05]: photonic corrections follow from a change in the regularization scheme

$$\mathcal{M}(m = 0, \underbrace{1/\epsilon}_{\text{IR and collinear}}) \Rightarrow \mathcal{M}(\underbrace{\ln(s/m_e^2)}_{\text{collinear}}, \underbrace{\ln(\lambda^2/m_e^2)}_{\text{IR}}) + \delta\mathcal{M}$$

[Mitov-Moch '06]: for $2 \rightarrow n$ QED/QCD scattering process

$$\mathcal{M}(m \neq 0) = \prod_{j} \mathcal{Z}_{j}^{1/2} \mathcal{M}(m = 0) \quad \mathcal{Z}_{j} = \frac{F_{D}(Q^{2}, m \neq 0)}{F_{D}(Q^{2}, m = 0)}$$

[Becher-Melnikov '07]: in QED assuming $m_e^2 << m_f^2 << s, t, u$ heavy fermions can be included

$$\mathcal{M}(m \neq 0) = \prod_{j} \mathcal{Z}_{j}^{1/2} \underbrace{\mathcal{S}(m_{f})}_{\text{process dependent}} \mathcal{M}(m = 0)$$

$N_f = 1$ NNLO massive QED Corrections

Fermionic corrections: electrons in SE loops

[Bonciani,Ferroglia,Mastrolia,Remiddi,van der Bij '05]

 \Rightarrow electron loops with full m_e dependence

recalculated in 2007

▶ [Actis, JG, Czakon, Riemann '07]

 \Rightarrow electron loops with full $m_{\rm e}$ dependence

and in small electron limit:

▶ [Becher-Melnikov '07]

 \Rightarrow electron loops $m_e^2 << s, t$

Evaluation of the MIs Electron-Loop Case

MIs evaluated using the method of differential equations [Kotikov '91] [Remiddi '97] [Caffo,Czyz,Laporta,Remiddi '98]

Three-scale problem: s, t, me

$$x = rac{\sqrt{s} - \sqrt{s - 4m_e^2}}{\sqrt{s} + \sqrt{s - 4m_e^2}}$$
 $y = rac{\sqrt{4m_e^2 - t} - \sqrt{-t}}{\sqrt{4m_e^2 - t} + \sqrt{-t}}$

MIS: HPLS [Remiddi, Vermaseren '99] and 2dHPLS [Gehrmann, Remiddi '00]

Full agreement with the existing result [Bonciani,Ferroglia,Mastrolia,Remiddi,van der Bij '05] [S.A.,Czakon,Gluza,Riemann '07]

$N_f = 2$ NNLO leptonic massive QED Corrections

First results:

► [Becher-Melnikov '07] $\Rightarrow m_e^2 << m_f^2 << s, t, u$ ► [Actis, JG, Czakon, Riemann '07] $\Rightarrow m_e^2 << m_f^2 << s, t, u$

Next talk: "Two-Loop Heavy-Flavor Contribution to Bhabha Scattering"

 \Rightarrow here: $m_e^2 << m_f^2, s, t, u$

Finally, yet another approach (dispersion relations)

► [Actis, JG, Czakon, Riemann '08]

$$\Rightarrow m_e^2 << m_f^2, s, t, u$$

I: Evaluation of the MIs Heavy Fermions

Four-scale problem: s, t, m_e , $m_f \rightarrow$ new heavy-fermion scale

- Exploit the hierarchy of scales m²_e << m²_f << s, t, u
- Evaluate the MIs neglecting $\mathcal{O}(m_e^2/m_f^2)$, $\mathcal{O}(m_e^2/s)$, $\mathcal{O}(m_f^2/s)$

Mellin-Barnes method [Smirnov '99] [Tausk '99] efficient

- MB representations by AMBRE [Kajda, JG, Riemann '07]
- sums with XSummer [Moch,Uwer '05]

Example: box MIs, $L_m(x) = \ln(-m^2/x)$ and $R = m^2/M^2$

$$B[x,y] = \frac{m^{-4\epsilon}}{x} \Big\{ \frac{1}{\epsilon^2} L_m(x) + \frac{1}{\epsilon} \Big(-\zeta_2 + 2L_m(x) + \frac{1}{2} L_m^2(x) + L_m(x) L_m(y) \Big) \\ - 2\zeta_2 - 2\zeta_3 + 4L_m(x) + L_m^2(x) + \frac{1}{3} L_m^3(x) - 4\zeta_2 L_m(y) \\ + 2L_m(x) L_m(y) + L_m(x) L_m^2(y) - \frac{1}{6} L_m^3(y) \\ - \Big(3\zeta_2 + \frac{1}{2} L_m^2(x) - L_m(x) L_m(y) + \frac{1}{2} L_m^2(y) \Big) \ln \Big(1 + \frac{y}{x} \Big) \\ - \Big(L_m(x) - L_m(y) \Big) \text{Li}_2 \Big(-\frac{y}{x} \Big) + \text{Li}_3 \Big(-\frac{y}{x} \Big) \Big\},$$

$$\begin{aligned} \mathsf{Bd}[x,y] &= \frac{m^{-4\epsilon}}{xy} \Big\{ \frac{1}{\epsilon} \Big[-L_m(x)L_m(y) + L_m(x)L(R) \Big] - 2\zeta_3 + \zeta_2 L_m(x) + 4\zeta_2 L_m(y) \\ &- 2L_m(x)L_m^2(y) + \frac{1}{6}L_m^3(y) - 2\zeta_2 L(R) + 2L_m(x)L_m(y)L(R) - \frac{1}{6}L^3(R) \\ &+ \left(3\zeta_2 + \frac{1}{2}L_m^2(x) - L_m(x)L_m(y) + \frac{1}{2}L_m^2(y) \right) \ln \left(1 + \frac{y}{x} \right) \\ &+ \left(L_m(x) - L_m(y) \right) \mathsf{Li}_2 \left(-\frac{y}{x} \right) - \mathsf{Li}_3 \left(-\frac{y}{x} \right) \Big\}. \end{aligned}$$

Checks on the Computation

- \Rightarrow UV/IR/collinear structure of the result
 - UV divergencies cancel after inserting counterterms
 - IR divergencies cancel after including single-photon emission
 - $O(m_e^{-n})$ from IBPIs cancel \Rightarrow collinear divergencies ln (s/m_e^2)
- ⇒ Dirac FF agrees with [Burgers '85] [Kniehl,Krawczyk,Kühn,Stuart '88]
- ⇒ Expansions of MIs checked with sector decomposition [Binoth,Heinrich '00]

Structure of the result

After combining the 2-loop terms with the loop-by-loop terms and with soft real corrections:

Irreducable terms

$$\frac{d\sigma^{\text{NNLO},f^2}}{d\Omega} = \frac{\alpha^2}{s} \left\{ \sigma_1^{\text{NNLO},f^2} + \sigma_2^{\text{NNLO},f^2} \ln\left(\frac{2\omega}{\sqrt{s}}\right) \right\}$$

$$\sigma_{1}^{\text{NNLO}, f^{2}} = \frac{\left(1 - x + x^{2}\right)^{2}}{3x^{2}} \left\{ -\frac{1}{3} \left[\ln^{3} \left(\frac{s}{m_{e}^{2}} \right) + \ln^{3} \left(\frac{m_{e}^{2}}{m_{f}^{2}} \right) \right] \right.$$
$$\left. + \ln^{2} \left(\frac{s}{m_{e}^{2}} \right) \left[\frac{55}{6} - \ln \left(\frac{m_{e}^{2}}{m_{f}^{2}} \right) + \ln \left(-1 + 1/x \right) \right] \right.$$
$$\left. + \cdots \cdots \right\}$$

Structure of the Result

$$\frac{d\sigma_2}{d\sigma_0} = \left(\frac{\alpha}{\pi}\right)^2 \left[A \ln\left(\frac{2\omega}{\sqrt{s}}\right) + B \ln\left(\frac{s}{m_e^2}\right) + C \right]$$
$$C = C_3 \ln^3\left(\frac{s}{m_f^2}\right) + C_2 \ln^2\left(\frac{s}{m_f^2}\right) + C_1 \ln\left(\frac{s}{m_f^2}\right) + C_0$$

$$C_3 = -\frac{1}{9}$$
 $C_2 = \frac{19}{18} + \frac{1}{3} \ln \left(\frac{1-x}{x}\right)$ $x = -\frac{t}{s} = \sin^2 \left(\frac{\theta}{2}\right)$

$$C_{0} \left. \right\} \Longrightarrow (1000 \pm 1000 \pm 10000 \pm 10000\pm 10000\pm 10000\pm \pm 10000\pm 10000\pm 10000\pm 10000\pm 10000\pm 10000\pm 10000\pm 10000\pm 1000$$

$$\begin{array}{c} \displaystyle \frac{1}{10(1-x+t)^2} \Big[818-1636x+24154x^2-1636x^3+818x^4+216\zeta_2-432x\zeta_2-162x^2\zeta_3\\ + 50x^2\zeta_2-432x^2\zeta_2+1204x_{--}-186x^2L_{--}+186x^2L_{--}+120x^4L_{--}+212x^4\\ + 50x^2\zeta_2-470x^2L_{--}-186x^2L_{--}+72x^2L_{--}-444x_{-}+72x^4L_{--}-444x_{-}+72x^4L_{--}-84x^2L_{--}+16x^2L_{--}+L_{+}\\ + 00x^2L_{+-}-120x^4L_{+-}-104L_{--}L_{++}+432xL_{--}L_{++}-378x^2L_{--}L_{+}+108x^2L_{--}L_{+}\\ + 36L_{+-}^2-153xL_{+-}^2+153x^2L_{+-}^2+9x^2L_{+-}^2-72x^4L_{+-}^2-144\left(1-x+x^2\right)^2L_{2}(1-x)\\ + 14\left(1-x+x^2\right)^2L_{2}(x) \right) \end{array}$$

[S.A.,Czakon,Gluza,Riemann '07] [Becher,Melnikov '07]

Present situation, virtual NNLO QED

Hadronic contributions

1 [ACGR, Physical Review Letters, 100, 2008]

Beyond $m_f^2 << s$

• KLOE
$$\sqrt{s} = 1 \text{ GeV} < m_{ au}$$

• ILC
$$\sqrt{s} = 500 \text{ GeV} \Rightarrow m_t < \sqrt{-t}, \sqrt{-u}$$

 $40^0 < \theta < 140^0 \neq$ region for luminosity

- \Rightarrow Kinematical regions where expansions don't work
- \Rightarrow General method for including hadronic effects

Dispersion Relations

▶ Obtain fermionic corrections inserting Π_R in $\Delta_{\gamma}^{\mu\nu}$

$$rac{g_{\mu
u}}{q^2+i\,\delta}
ightarrow rac{g_{\mulpha}}{q^2+i\,\delta} \left(q^2\,g^{lphaeta}-q^lpha\,q^eta
ight)\, {\sf \Pi}_{\sf R}(q^2)\,rac{g_{eta
u}}{q^2+i\,\delta}$$

• Represent Π_R through a dispersion integral

$$\Pi_{\mathcal{R}}(q^2) = -\frac{q^2}{\pi} \int_{4M^2}^{\infty} \frac{dz}{z} \frac{\operatorname{Im} \Pi(z)}{q^2 - z + i \,\delta}$$

Leptons, top (perturbative) Im $\Pi_f(z) = -\left(\frac{\alpha}{\pi}\right) F_{\epsilon} \left(\frac{m_{\theta}^2}{m_f^2}\right)^{\epsilon} Q_f^2 C_f \times \\ \times \theta \left(z - 4 m_f^2\right) \frac{\pi}{3} \left\{\frac{\beta_f(z)}{2} \left[3 - \beta_f^2(z)\right]\right\}$

Light quarks (non pert.) Unitarity $\Rightarrow \text{Im} \Pi_{\text{had}}(z) = -\frac{\alpha}{3} R_{\text{had}}(z)$ $R_{\text{had}}(z) = \frac{\sigma(\{e^+e^- \to \gamma^* \to \text{hadrons}\}; z)}{(4\pi\alpha^2)/(3z)}$

Effectively we must calculate following MIs

► again expanded from MB representations

Box Master, M₈

$$\int \frac{d^{D}k}{(k^{2}-z)\left[(k+p_{3})^{2}-m_{\theta}^{2}\right](k+p_{3}-p_{1})^{2}\left[(k+p_{3}-p_{1}-p_{2})^{2}-m_{\theta}^{2}\right]}$$

$$= \frac{1}{s(t-z)}\left\{\frac{1}{\epsilon}\left[\ln\left(-\frac{m_{\theta}^{2}}{t}\right)+\ln\left(-\frac{z}{s}\right)-\ln\left(-\frac{z}{t}\right)\right]-2\zeta_{2}\right\}$$

$$+ \ln\left(-\frac{m_{\theta}^{2}}{t}\right)\left[\frac{1}{2}\ln\left(-\frac{m_{\theta}^{2}}{t}\right)+\ln\left(-\frac{z}{s}\right)+\ln\left(-\frac{z}{t}\right)-2\ln\left(1-\frac{z}{t}\right)\right]$$

$$- \frac{3}{2}\ln^{2}\left(-\frac{z}{t}\right)+\ln\left(-\frac{z}{s}\right)\ln\left(-\frac{z}{t}\right)$$

$$- 2\ln\left(1-\frac{z}{t}\right)\left[\ln\left(-\frac{z}{s}\right)-\ln\left(-\frac{z}{t}\right)\right]-\text{Li}_{2}\left(1+\frac{z}{s}\right)\right\}+\mathcal{O}(m_{\theta}^{2}).$$

IR finite results with boxes

The 4 direct and 4 crossed fermionic 2-loop box diagrams have to be combined with other diagrams for an IR-finite contribution:

► assembling all diagrams, the terms in $\ln(s/m_e^2)$ drop out and the total contribution of fermionic box diagrams is free of collinear divergencies

► a sensible, infrared safe cross-section contains the complete sum of all the single IR-divergent diagrams, or no one of them

Hadronic \rightarrow leptonic, $m_{\pi} \rightarrow m_f$, plus change of kernels

\sqrt{s} [GeV]	1	10	Mz	500
boxes+red.	193	5.73	0.1357	0.00673
μ	< 1	0.42	0.0408	0.00288
	_	0.08	0.0407	0.00288
τ	< 1	< 10 ⁻²	0.0027	0.00088
	_	_	-0.0096	0.00084
i	< 1	< 10 ⁻²	< 10 ⁻⁴	< 10 ⁻⁵
	—	-	_	-
hac	< 1	0.39	0.0877	0.00811

Table: Differential cross sections in nanobarns at a scattering angle $\theta = 3^{\circ}$, in units of 10². net sum of infrared-sensitive corrections, including double boxes, dispersion approach (first line) and analytical expansion [ACGR:2007] (second line). When $m_t^2 > s$, |t|, |u|, the entry is suppressed. Parameters: $\omega = \sqrt{s}/2$, $M_Z = 91.1876$ GeV, $m_t = 172.5$ GeV.

arXiv:0711.3847, version 1 calculations with R_{had} programs by Burkhardt

Numbers from Bonciani, Ferroglia, Penin, '08

$\sqrt{s} = 1 \text{ GeV}$	θ	$e (10^{-4})$	μ (10 ⁻⁴)	$c (10^{-4})$	τ (10 ⁻⁴)	$b~(10^{-4})$
	50°	17.341004	1.7972877	0.0622677	0.0264013	0.0010328
	60°	18.407836	2.2267654	0.0861876	0.0367058	0.0014184
	70°	19.438718	2.6504950	0.1086126	0.0465329	0.0018907
	80°	20.465455	3.0655973	0.1253094	0.0540991	0.0022442
	90°	21.463240	3.4581845	0.1321857	0.0576348	0.0024428
	100°	22.366427	3.8070041	0.1268594	0.0560581	0.0024304
	110°	23.099679	4.0922189	0.1098317	0.0495028	0.0022024
	120°	23.605216	4.3030725	0.0843311	0.0392810	0.0018086
	130°	23.847394	4.4392717	0.0549436	0.0273145	0.0013297

agreement (in all digits for μ) and for $m_{\tau} = 1.7$ GeV [but not 1.777 GeV] :-)) Introduction

Introduction

Summary

- we are definitely in the LHC era, however, in the last 2 years NNLO QED Bhabha corrections have been extensively studied by different groups and they reach the level of several permille in the regions needed for measuring the luminosity
 ⇒ it's good (in my opinion)
- their contributions are small, but non-negligible at the permille level
- the results have to be compared and interfaced with the available MC generators