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explored e.g. for Bhabha massive 2-loop calculations, 3-loop QCD form factors

% treatment of mixed virtual and IR singularities

e.g. Mellin-Barnes method and exact analytical solutions
— easy connection with Minkowskian space,

J.G., T. Riemann, PoS RADCOR2007:007,2007

*» useful as a testing ground for relations obtained in reduction of tensor Feynman
integrals
Diakonidis, Kajda, Fleischer, JG, Riemann, Tausk, 2008-2010

< numerical checks of some relations where exact methods fail
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% e.g. Bern, Czakon, Dixon, Kosower, Smirnov, PRD 2007

“There is now significant evidence of a very simple structure in the planar limit. In particular, the planar contributions
to the two-loop and three-loop four-gluon amplitudes have been shown to obey iterative relations ..."
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Methods of calculations

% Mellin-Barnes (MB)

% sector decomposition (SD)
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< AMBRE www

AMBRE - Automatic Mellin-Barnes REpresentation
arXiv: 0704.2423

J. Gluza, K. Kajda (Silesia U.) , T. Riemann (DESY, Zeuthen)

To download 'right click' and 'save target as'.

o The package AMBRE.m, version 1.2

This version allows to generate M-B representations for tensor integrals containing not only scalar products of
internal and external momenta, but also internal momenta with indices only. Additionally new options were added,
among others it allows to generate representations without doing "X" integration (here we would like to thank
Pierpaolo Mastrolia for this suggestion). Detailed description of new features is avaliable in the following
examples:

= description of new features: mathematica file

= example of QED vertex with the following numerators: (k1.k1)A2, numerator with general external

momenta, numerator without external momenta - example file

o The package AMBREv1.1.m, version 1.1
This version allows to obtain MB-representations for direct products of Feynman integrals like e.g. tadpole*box,
SE*vertex, etc.
We thank Stefan Bekavac for indicating to the interest in this extension.
o The package AMBREvV1.0.m, version 1.0
This version is described in arXiv:0704.2423
and Computer Physics Communications 177 (2007) 879, see some details from the CPC web page: here
o Kinematics generator for 4- 5- and 6- point functions with any external legs KinematicsGen.m with examples
o Tarball with examples given below examples.tar.gz
= examplel.nb, example2.nb - Massive QED pentagon diagram.

So far without possibility to calculate any tensor multiloop Feynman integrals (only one-loop cases)
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http://www.us.edu.pl/~gluza/ambre/index.htm

% plus M. Czakon MB package (analytic continuation) MB tools
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http://projects.hepforge.org/mbtools

* Home

® Downloads
® |ailing list
® Tracker

& Wiki

MB Tools

This project is a collection of tools devoted to the evaluation of Mellin-Barnes integrals.

The project has been started by Michasl Czakon; currently the web-page is also being updated by Alexander
Smirnon.

The project is at the development stage, so expect more codes to appesar here.

Currently the following codes can be downlcaded:

ME.m : version 1.2 of MB (last updated January 2nd, 2009 by Michal Czakon,

the main colliection of routines for the resolution of singularities and the numerical evaluation of Mellin-Barnes
integrals;

for details ses hep-ph/0511200,

the current version is documentad in the Manual ;

the distribution contains two exampke notebooks, MBexamplkes1.nb and MBexampkes2.nkb;

MEasymptotics.m : a routine which expands Melin-Barnes integrals in a small parameter by Michal Czakon;
example usage is illustrated in MBasymptotics.nb;

MEresolve.m : a tool by Alxander Smirnow and Viadimir Smirnow realizing ancther strateqy of resohing
sinquiarities of Mellin-Barnes integrals. This code should be lbaded together with MB.m since it uses some of its
routines. For details ses arxivi0e01 0386

AMBRE.m : a tool by Janusz Gluza, Krzysziof Kajda and Tord Riemann for constructing Mellin-Barnes
representations. It works both for planar multiloop scalar and one-loop tensor Feynman integrals. This is version
1.2, for previous versions and detailed description of the package with examples ses the home page . The
program is described in arkv:0704.2423 and Computer Physics Communications 177 (2007) 879,

barnesroutines.m @ a tool by David Kosower for automatic application of the first and second Barnes kemmas on
lists of multiple Melin-Barnes integrals. An example notebook is included.

The numerical integration routines used by ME require the following libraries to be installed, either in the current

working directory, or in the global repository for libraries (e.g. /usrilocallib)
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Tensors
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Tensors

General form (T'(k) = 1, k)", ki'kY, . ..)

T (k)] = — /( diky ... d%k;, T(k)

(im /2L | (g2 —m2)1 ... (¢ — m2)Yi ... (q% — m3% VN’

)

After Feynman parametrization
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The object: {ATPm_T}[M"”’“m] is used to introduce tensor structure:

@ m=2
Z{ATP2—T}[HLUJ2] _ {AOP2_|_A1P1_|_A2P0}[,LL1,LL2]
r<2
— PH1 PH2 + §M1M2
% m=3
Z{ATPB—r}[mmu:s] _ {A0P3+A1P2+A2P1+A3PO}[“1”2“3]
r<3

— PHIpH2PH3 4 GHRIH2 DH3 | GH2K3 PH1 | GH3K1 PH2



The object: {ATPm_T}[M"”’“m] is used to introduce tensor structure:

@ m=2
Z{ATP2—T}[H1/JJ2] _ {A0P2—|—A1P1—|—A2PO}[M1“2]
r<2
— PH1 PH2 + §M1M2
% m=3
Z{Arp?)—r}[muzms] _ {A0P3+A1P2+A2P1+A3PO}[“”‘2“3]
r<3

— PUlPﬂ2Pﬂ3 + §H1N2P,U3 + §N2/JJ3PN1 + gﬂBHlPlJQ

Ag, PO is one. A, is zero for r odd, and A, = §[“1“2 x -§“’7“—1“7”] for r even.
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a little bit more...
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a little bit more...

PFi and gtiti...

PHi— Z[Mal@l]m
[

5 s (V1) g

n n L L
Z Px; = Z(qf — m2)x; = Z kl Mk, — 2 Z ki Qj+ J,
i=1 j=1

i=1 i,j=1

F = —det(M)J + QMQ, M =det(M)M™!.
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F polynomial and Mellin-Barnes
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n terms leads to n — 1 complex integrals.
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F polynomial and Mellin-Barnes

1 1 1 /c—l—ioo /c+7joo d dz ﬁ Azz
(A1 + ...+ Ap)> TN (2mi)—1 /. ) : i

—100 —100 i—9
n

x ATVTERTITT(A+ 22+ +20) [ [ T(-20)
1=2

n terms leads to n — 1 complex integrals.

Finally, integration over Feynman parameters

tL a;i—1 & ~ I(a1)...T(an)
/o izl_[ldxjxjj 5<1_Z$z‘> - T(ar+---+an)

1=1
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SE with numerator

T
Y,

/ (k1 -p)(k1-p)(ks - p)
[kg]1 (k2 — k1)2]"2[(k1 + p)2|m3[ks] ™4[ (k2 + p)?]"s

F = —[]432]2331332 — S¥1X3 — [(]{72 —I—p)Q]ZIfQQ?g

d%k1d%.
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Pﬂl PMQ + §H1M2

Tensor structure

N QMlQMQ + gmm
N (kglilﬁg _ pulxg)(k52$2 _ p“Qng) + gmm

M1 .42 ,..2 M2 M1, 2 12 n2 1D
— {kg k2 fza_kg pu1$29337k2 p"2xoxs, pHiph L3, g }
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Tensor structure

PHMpH2 4 ghik2 . QRIQH2 4 gH1k2
N (kglilfg _ p“lxg)(k52:62 _ p““Q:Cg) + gu1u2

M1 .02 ,.2 B2 1 M1, 2 17 M2 1n2 12
— {kQ k2 %a—kg p” 37251737]‘% p“ $2$37PM p“ 55379” H }

Usually a rank of a given integral in the next step of iteration will include higher
rank tensors than the original object

/ plulpluz(kQ 'p)

[k%]—zl [(k.2 _|_ p)Q]—?)—I—E—I—nl—I—nQ—I—’ng—I—Zl—I—ZQ
X {kSTEE2MB1, —k52pHIMBs, k5 p2MBg3, pH1pH2MBy, g“1“2M85}ddk2,
MB; = ((—=1)27"2(—8)®2I'(2 — € — n1 — na — 21)[(—=21)T(4 — € — ny — n3 — 23)

X  D(=2z2)I'(n1 +z1 + 22)I'(=2+ €+ n1 +na+n3 + z1 + 22))/
X  (I'(n)'(n2)l'(6 — 2¢ — n1 — ng — ng)l'(ng)).
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(kyp)(kyip)(kap) d d
f [klj]ul [(ka—Fy )3]¥2 [{k1+p}2]u3[k%]u4 [(k2tp)2]" d kld kz

—alf-

f leplm(k P)
[
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A
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Fortunately ...

All the above steps are hidden to the user.
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invariants = {pl~2->s};

MBrepr [{k1*pl,ki1*pl,k2*pl},{PR[k1,0,n1]*PR[k2,0,n2]*
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Fortunately ...

All the above steps are hidden to the user. The only action is to define the object
and load the package:

<< AMBREn.m

invariants = {pl~2->s};

MBrepr [{k1*pl,ki1*pl,k2*pl},{PR[k1,0,n1]*PR[k2,0,n2]*
PR[k2-k1,0,n3]*PR[k1+p1,0,n4] *PR[k2+p1,0,n5]},{k1,k2}]

Output:!

repr = {-(((-1) " (n1+n2+n3+nd4+nb)*(-s) " (4-2*eps-n1-n2-n3-n4-n5)*s~3
Gamma [2-eps-n1-n3-z1] *Gamma [-z1] *Gamma [5-eps-n2+z1]
*xGamma [4-eps—-nl1-n4-z2] *Gamma [4-2*eps-nl1-n3-n4-nb5-z1-z2]
*Gamma [-z2] *Gamma [-4+2*eps+nl1+n2+n3+n4+n5+z2] *Gamma [n1+z1+z2]
*Gamma [-2+eps+nl+n3+n4+z1+z2])/(Gamma [n1] *Gamma [n3]
*Gamma [6-2*%eps—-n1-n3-n4] *Gamma [n4] *Gamma [n2-z1]
*Gamma [9-3*eps-n1-n2-n3-n4-n5-z2] *Gamma [-2+eps+nl+n3+nd+nb5+z1+z2])), ...}

1User can use Options to control output and its steps
Options[MBrepr] = Text — > True, BarnesLemmal — > True, BarnesLemma2 — > False;
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MBnum.m

s for multiloops usually many MB integrals, we need analytic continuation for
them in e parameter, sometimes even in additional parameter e.g. connected
with a power of first propagator: ny =1thenny — n;=1+4n
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MBnum.m

s for multiloops usually many MB integrals, we need analytic continuation for
them in e parameter, sometimes even in additional parameter e.g. connected
with a power of first propagator: ny =1thenny — n;=1+4n

% MBnum[repr, O, {m -> 1, s -> -5, t -> -7},
{nt > 1, n2 ->1, n3 > 1, n4 -> 1, n5 -> 1, n6 -> 1, n7 -> 1,
n8 -> 1}, 2] // AbsoluteTiming

ETA’s will be aplied on positions: {}
1. Calculating ’no eta’ parts...
Running MBcontinue...

Running MBexpand. ..
Running MBintegrate. ..
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2. Calculating ’eta’ parts...
No ’eta’ parts found!!!

Out []= {47.559004, -0.1034149 -0.0228571/eps~4 + 0.0831877/eps~3
- 0.0096574/eps”2 - 0.109073/epst

LL2010, Worlitz, J. Gluza
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Sector decomposition

" Sector decomposition is a constructive method to isolate divergences from parameter integrals...”,

a comprehensive review by G. Heinrich, arXiv:0803.4177

Sector-decomposition by Ch.Bogner and S.Weinzierl (arXiv:0709.4092 [hep-ph])
calculates basic parts needed for the tensor structure’:

/ A"z 6(1 = a) [ [Ty | T] [Pt
;>0 i=1 i=1 j=1
_ (=™ & SRS -
G |T(k)] = T TN /Hdmjxjﬂ ) (1 — ;xz>

U (Ny — 4L - §) yNv—§@L+)-m

T d i
r<m (—2)2 FNV_iL_%

2another public program is FIESTA by Tentyukov and Smirnov

LL2010, Worlitz, J. Gluza



CSectors.m

% is a MATHEMATICA interface linked with GiNaC libraries of “sector decompo-
sition” by Bogner and Weinzierl
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CSectors.m

% is a MATHEMATICA interface linked with GiNaC libraries of “sector decompo-
sition” by Bogner and Weinzierl

% can build m-rank tensor structure for L-loop integrals
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CSectors.m

% is a MATHEMATICA interface linked with GiNaC libraries of “sector decompo-
sition” by Bogner and Weinzierl

% can build m-rank tensor structure for L-loop integrals

% process of numerical calculation of integrals is fully automatic

LL2010, Worlitz, J. Gluza
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3 loop vertex of rank 3

ko - p2 k3 -p1 k3 -p1
d%k,d%kodk 2
/ B 3k?k§k§(k2 + k3 + p2)?(k1 — k3)?(k1 + ko — p1 + p2)?
P2
P1
P3
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A part in the Mathematica environment

<< CSectors.m;
x=-11;
invariants={pl*p2->1/2%x,pl*p3->1/2%x,p2*p3->1/2*x,pl"2->x,
p2°2->0,p3°2->0};
DoSectors [{k2+p2,k3*p1l,k3*p1}, {PR[k2+k3+p2,0, 1] *PR[k1-k3,0,1]*
PR[k3,0,1]1*PR[k1+k2-p1+p2,0,1]1*PR[k1,0,1]1*PR[k2,0,3]},
{k1,k2,k3}] [-5,0];
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A part in the Mathematica environment

<< CSectors.m;
x=-11;
invariants={pl*p2->1/2%x,pl*p3->1/2%x,p2*p3->1/2*x,pl"2->x,
p2°2->0,p3°2->0};
DoSectors [{k2*p2,k3*pl,k3*pl},{PR[k2+k3+p2,0,1]*PR[k1-k3,0,1]*
PR[k3,0,1]*PR[k1+k2-p1+p2,0,1]*PR[k1,0,1]1*PR[k2,0,3]},
{k1,k2,k3}]1[-5,0];

Output>:

CSectors by K.Kajda and V.Yundin ver:1.0
last modified 25.04.2010

Using strategy C

3Speed and efficiency of calculations depends on the algorithm, defined as strategies A-D by Bogner and Weinzierl

LL2010, Worlitz, J. Gluza
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U & F polynomials:

U = x4 (xb x6 + x3 (x5 + x6)) + x1 (x4 x5 + x2
(x3 + x4 + x5) + x4 x6 + x5 x6 + x3 (xb + x6)) + x2
((x4 + x5) x6 + x3 (x4 + x5 + x6))

F =11 (x3 (x2 + x4) + x1 (x3 + x4)) xb x6

Q11 = ... (a few lines)
Q12 = ... (a few lines)
Q21 = 121*x2*x3"2*xx6°2/4

Q22 = ... (a few lines)

()'s are generated terms by the tensor structure {ATPm—T}[“l’“"“m]
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Internal work

Generating c++ source...Intll...Intl12...Int21...Int22...done
Compiling source code...Intll...Intl12...Int21...Int22...done
Running binary file..... Intll...Intl12...Int21...Int22...done
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Internal work

Generating c++ source...Intll...Intl12...Int21...Int22...done
Compiling source code...Intll...Intl12...Int21...Int22...done
Running binary file..... Intll...Intl12...Int21...Int22...done

and the result is

Result=
{-7.622574999999999 - 0.0260407/eps”4
+ 0.049527000000000015/eps~3 - 0.4168788/eps~2 + 0.56955/eps,
{1.3667737639753552, 2.85804370185272*"-6/eps"4,
0.00009220935574625821/eps~3, 0.0004811810295896961/eps~2,
0.006549529654501916/eps}}
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Numerics for the massless and massive double planar box B1.

massless AMBRE and MB | CSectors, X-strat.
eV | —0.1034+£6-107° —0.1035 =4 0.0002
e ! —0.10907 —0.10915 £ 0.00008
= —0.00966 —0.00966 £ 0.00001
e 3 0.083188 0.083191 £ 0.000005
e 4 —0.022857 | —0.02285744+1-10°
T [s] 28 1712
s=-—5,t=-—7
massive | AMBRE and MB | CSectors, C-strat.
eV 0.2246 0.2246 + 0.0001
e ! 0.06359 0.06357 £ 0.00003
€2 —0.023524 | —0.023524 + 4 -107°
T [s] 50 345
s=—-H,t=—-7,m=1
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% For massless cases, e.g. two-loop 4 point functions, sector decomposition method
needs a lot of RAM memory (a few GB is not an exception). Then numerical
values are easier to be found for integrals using MB method (especially when
used with barnesroutines.m by D. Kosower, which can simplify dimensionality of

an integral substantially).
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* For massive cases a situation is usually opposite



% For massless cases, e.g. two-loop 4 point functions, sector decomposition method
needs a lot of RAM memory (a few GB is not an exception). Then numerical
values are easier to be found for integrals using MB method (especially when
used with barnesroutines.m by D. Kosower, which can simplify dimensionality of
an integral substantially).

* For massive cases a situation is usually opposite

% Note different strategies used for efficient calculation within CSectors

LL2010, Worlitz, J. Gluza
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Cross-checks

iterative way: reduction of numerators by cancelations with propagators
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Cross-checks

% iterative way: reduction of numerators by cancelations with propagators

% using IBP relations (reduction with IdSolver by M.Czakon)
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Cross-checks
% iterative way: reduction of numerators by cancelations with propagators
% using IBP relations (reduction with IdSolver by M.Czakon)

% order of iterations of internal momenta
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Cross-checks
% iterative way: reduction of numerators by cancelations with propagators
% using IBP relations (reduction with IdSolver by M.Czakon)
% order of iterations of internal momenta

% comparison between results by MB and SD methods

LL2010, Worlitz, J. Gluza
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Summary
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Summary

% | report on two user friendly programs AMBRE (should be used e.g. with
MB.m by M. Czakon) and CSectors.m (should be used with the Ginac sector
decomposition by Bogner and Weinzierl) which are able to calculate numerically
tensor multiloop Feynman integrals in the Euclidean region
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% | report on two user friendly programs AMBRE (should be used e.g. with
MB.m by M. Czakon) and CSectors.m (should be used with the Ginac sector
decomposition by Bogner and Weinzierl) which are able to calculate numerically
tensor multiloop Feynman integrals in the Euclidean region

% due to RAM memory and time of calculation, the programs are efficient for
tensor two loop massive and massless boxes or 3-loop massive and massless
vertices
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Summary

% | report on two user friendly programs AMBRE (should be used e.g. with
MB.m by M. Czakon) and CSectors.m (should be used with the Ginac sector
decomposition by Bogner and Weinzierl) which are able to calculate numerically
tensor multiloop Feynman integrals in the Euclidean region

% due to RAM memory and time of calculation, the programs are efficient for
tensor two loop massive and massless boxes or 3-loop massive and massless

vertices

% the programs can be complementary to each other

LL2010, Worlitz, J. Gluza
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www will be launched soon

CSectors - numerical calculation of multiloop tensor integrals

in Euclidean region by sector decomposition

arXiv: XXXx.yyvy
I. Gluza, K. Kajda (Silesia U.), T. Riemann, V. Yundin (DESY, Zeuthen)
See here (Mellin-Barnes) for an alternative way of numerical calculation of Feynman Integrals in Euclidean region.

To download 'right click' and 'save target as'.

= The package CSectors.m, version 1.0
The package compute numerically the Laurent expansion of (divergent) multi-loop tensor Feynman integrals. It generates
appropriate files in an automatic way and links them with the basic sector decomposition program by Bogner and Weinzierl
webpage. See there for description and download of the package altogether with Ginac. Detailed description how to define
integrals for numerical calculations can be found in the paper wXiv: xxxx.yvyy and the following examples:

B description of new features: mathematica file

Tarball with examples given below examples.tar.gz. Some of examples below correspond to the examples calculated by

Mellin-Barnes on the webpage here , additional examples here include non-planar cases. All include some numerators.

B cxl_pentagon.sh, output_exl_pentagon.sh - Massive QED pentagon diagram.
&
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