Numerical evaluation of Mellin-Barnes integrals in

 Minkowskian kinematicsWorkshop Katowice

Johann Usovitsch
Institut für Physik
Humboldt-Universität zu Berlin

8. March 2017

Outline

(1) Theoretical framework
(2) Outline of the calculation
(3) Numerical Mellin-Barnes integration in Minkowskian kinematics
(4) Conclusions and Outlook

Asymmetries measured at the Z pole

We study the process $e^{+} e^{-} \rightarrow(Z) \rightarrow b \bar{b}$
Pseudo-observables, unfolded at the Z peak
forward-backward asymmetry $A_{\mathrm{FB}}^{\mathrm{b} \overline{\mathrm{b}}, 0}=\frac{3}{4} A_{\mathrm{e}} A_{\mathrm{b}}$
f-b left-right asymmetry $A_{\mathrm{FB}, \mathrm{LR}}^{\mathrm{b}, 0}=\frac{3}{4} P_{\mathrm{e}} A_{\mathrm{b}}, P_{\mathrm{e}}$ is the electron polarization

$$
\begin{equation*}
A_{\mathrm{b}}=\frac{2 \Re e \frac{v_{b}}{a_{\mathrm{b}}}}{1+\left(\Re e \frac{v_{b}}{a_{b}}\right)^{2}}=\frac{1-4\left|Q_{b}\right| \sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{b}}}{1-4\left|Q_{b}\right| \sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{b}}+8 Q_{b}^{2}\left(\sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{b}}\right)^{2}} \tag{1}
\end{equation*}
$$

Definition of the effective weak mixing angle

$$
\begin{equation*}
\sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{b}}=\frac{1}{4\left|Q_{b}\right|}\left(1-\Re e \frac{v_{b}}{a_{b}}\right) \tag{2}
\end{equation*}
$$

v_{b} and a_{b} are effective vector coupling and axial-vector coupling of the $Z b \bar{b}$ vertex

Samples of Feynman integral topologies for the $Z \bar{b} b$ vertex

After projection only scalar integrals remain, but may contain non-trivial combinations of scalar products in the numerator.

Some non trivial cases:

- (b) $m_{4}=\left\{M_{Z}\right\}$ and $m_{1}=\left\{M_{W}, m_{t}\right\}$ and $m_{5}=m_{6}=\left\{m_{t}, M_{W}\right\}$
- (c) $m_{1}=m_{4}=\left\{M_{Z}\right\}$
- (d) $m_{5}=\left\{M_{Z}\right\}$ and $m_{6}=\left\{M_{W}, m_{t}\right\}$ and $m_{2}=m_{3}=\left\{m_{t}, M_{W}\right\}$

Two independent numerical calculations

- The integrals contain up to three dimensionless parameters

$$
\begin{equation*}
\left\{\frac{M_{H}^{2}}{M_{Z}^{2}}, \frac{M_{W}^{2}}{M_{Z}^{2}}, \frac{m_{t}^{2}}{M_{Z}^{2}}, \frac{\left(M_{Z}^{2}+i \varepsilon\right)}{M_{Z}^{2}}\right\} \tag{3}
\end{equation*}
$$

- Many of them contain ultraviolet and infrared singularities, even though the divergences cancel in the final result
- In general, it is not possible to compute all integrals analytically with available methods and tools, but instead one has to resort to numerical integration strategies
- The aim is to obtain eight significant digits, to be obtained with two completely independent numerical calculations

Numerical Methods

Sector decomposition

FIESTA 3 [A.V.Smirnov, 2014] and SecDec 3 [Borowka, et. al., 2015]

Mellin-Barnes integral approach

- With AMBRE 2 [Gluza, et. al., 2011] (AMBRE 3 [Dubovyk, et. al., 2015]) we derived Mellin-Barnes representations for planar (non-planar) topologies. One may use PlanarityTest [Bielas, et. al, 2013] for automatic identification.
- Expansion in terms of $\epsilon=(4-D) / 2$ is done with MB [Czakon, 2006], MBresolve [A. Smirnov, v. Smirnov, 2009], barnesroutines (D. Kosower).
- For the numerical treatment of massive Mellin-Barnes integrals with Minkowskian kinematics, the package MBnumerics [Dubovyk, Riemann, Usovitsch] is being developed since 2015.

Mellin-Barnes integral construction

Master formula: $\frac{1}{(A+B)^{\nu}}=\frac{B^{-\nu}}{2 \pi i \Gamma[\nu]} \int_{-i \infty}^{+i \infty} \mathrm{~d} \sigma A^{\sigma} B^{-\sigma} \Gamma[-\sigma] \Gamma[\nu+\sigma]$
Loop integral with loop momenta k and propagator internal momenta q :

$$
\begin{equation*}
G_{L}[T(k)]=\frac{1}{\left(i \pi^{d / 2}\right)^{L}} \int \frac{d^{d} k_{1} \ldots d^{d} k_{L} \nrightarrow(k)}{\left(q_{1}^{2}-m_{1}^{2}\right)^{\nu_{1}} \ldots\left(q_{i}^{2}-m_{i}^{2}\right)^{\nu_{j}} \ldots\left(q_{N}^{2}-m_{N}^{2}\right)^{\nu_{N}}} \tag{5}
\end{equation*}
$$

Momentum integrals are replaced by the Feynman parameter integrals:

$$
\begin{equation*}
=\frac{(-1)^{N_{\nu}} \Gamma\left(N_{\nu}-\frac{d}{2} L\right)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{1} \prod_{j=1}^{N} d x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{U(x)^{N_{\nu}-d(L+1) / 2}}{F(x)^{N_{\nu}-d L / 2}} \tag{6}
\end{equation*}
$$

Introduce the master formula and eliminate all x integration variables with:

$$
\begin{equation*}
\int_{0}^{1} \prod_{i=1}^{N} d x_{i} x_{i}^{q_{i}-1} \delta\left(1-\sum_{j} x_{j}\right)=\frac{\Gamma\left(q_{1}\right) \cdots \Gamma\left(q_{N}\right)}{\Gamma\left(q_{1}+\cdots+q_{N}\right)} \tag{7}
\end{equation*}
$$

Mellin-Barnes Coefficients in the ϵ expansion, example 1

- Known analytic result for Master integrals in [Aglietti, Bonciani,2004]
- Mellin-Barnes integral coefficient in the ϵ expansion:

$$
\begin{equation*}
\mathcal{I}\left(z_{1}, z_{2}\right)=\frac{-\left(-\frac{s}{M_{Z}^{2}}\right)^{1+z_{1}} \Gamma\left[-z_{1}\right] \Gamma\left[1+z_{1}\right]^{2} \Gamma\left[1+z_{1}-z_{2}\right] \Gamma\left[-z_{2}\right] \Gamma\left[1+z_{2}\right]^{3} \Gamma\left[-z_{1}+z_{2}\right]}{2 \Gamma\left[3+z_{1}\right] \Gamma\left[1-z_{1}+z_{2}\right] \Gamma\left[2+z_{1}+z_{2}\right]} \tag{8}
\end{equation*}
$$

- Mellin-Barnes integration variables $z_{i}=x_{i}+i t_{i}$, where the x_{i} are fixed and $t_{i} \in(-\infty,+\infty)$
- Here $x_{1}=-\frac{2}{3}, x_{2}=-\frac{1}{3}$

Numerical integration in MB.m and MBnumerics.m

$$
\begin{gather*}
z_{i}^{\mathrm{L}}=x_{i}+i \ln \left(\frac{t_{i}}{1-t_{i}}\right), t_{i} \in(0,1), \text { Jacobians: } J_{i}^{\mathrm{L}}=\frac{i}{t_{i}\left(1-t_{i}\right)} \tag{9}\\
I^{\mathrm{MB} . \mathrm{m}}=\frac{1}{(2 \pi i)^{2}} \int_{0}^{1} \int_{0}^{1} J_{1}^{\mathrm{L}} J_{2}^{\mathrm{L}} \mathcal{I}\left(z_{1}^{\mathrm{L}}, z_{2}^{\mathrm{L}}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}
\end{gather*}
$$

$$
\begin{equation*}
z_{i}^{\mathrm{T}}=x_{i}+n_{i}+\frac{(i+\theta)}{\tan \left(-\pi t_{i}\right)}, t_{i} \in(0,1), \text { Jacobians: } J_{i}^{\mathrm{T}}=\frac{(i+\theta) \pi}{\sin ^{2}\left(\pi t_{i}\right)} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
I^{\mathrm{MBnumerics.m}}\left(n_{1}, n_{2}\right)=\frac{1}{(2 \pi i)^{2}} \int_{0}^{1} \int_{0}^{1} J_{1}^{\mathrm{T}} J_{2}^{\mathrm{T}} \hat{\mathcal{I}}\left(z_{1}^{\mathrm{T}}, z_{2}^{\mathrm{T}}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \tag{12}
\end{equation*}
$$

- $n_{i} \in$ Integers, shifts [Anastasiou, Daleo, 2006]
- $\theta \in$ Reals, rotations [Freitas, Huang, 2010]
- tangent mapping imposes $\mathcal{I}\left[\prod_{i} \Gamma_{i}\right] \rightarrow \hat{\mathcal{I}}\left[e^{\sum_{i} \ln \left(\Gamma_{i}\right)}\right]$
- $I^{\text {MBnumerics.m }}\left(n_{1}, n_{2}\right)$ is now a discrete function in n_{i}

Asymptotic behavior in generalized spherical coordinates

 for $r \rightarrow \infty$Euclidean kinematics

$$
\begin{equation*}
\Re e\left(\lim _{r \rightarrow \infty} \mathcal{I}\right) \approx \frac{e^{-\beta r}}{r^{\alpha}}, \beta>0 \text { and } \alpha \text { arbitrary } \tag{13}
\end{equation*}
$$

for any angular direction

Minkowskian kinematics (physical momenta)

$$
\begin{equation*}
\Re e\left(\lim _{r \rightarrow \infty} \mathcal{I}\right) \approx \frac{1}{r^{\alpha}}, \alpha \text { arbitrary } \tag{14}
\end{equation*}
$$

- logarithmic mapping always has an infinity at the boundary
- For $\alpha \geq 2$ tangent mapping has no infinities at the boundaries
- $\alpha<2$ in either mapping the integrand is not absolutely convergent

Rotations and Shifts

Contour rotations θ. The transformations $z_{i}=x_{i}+(i+\theta) t_{i}$ do not cross poles and may introduce $\beta>0$ for any angular direction in Minkowskian kinematics.
Contour shifts n_{i}. Treat the Mellin-Barnes integrals as discrete functions: $z_{i}=x_{i}+n_{i}+i t_{i}$.

- May improve convergence by shifting: $\Re e\left(\lim _{r \rightarrow \infty} \mathcal{I}\right) \approx \frac{1}{r^{\alpha\left(\left\{n_{i}+x_{i}\right\}\right)}} \alpha \geq 2$.
- Add up all crossed poles (integrals with one dimension less)
- May reduce the order of magnitude of the shifted integral
- The shifted integral and its poor knowledge becomes numerically less important
- In effect, the procedure consists of a summing over a finite number of residues with a controlled remainder.

Numerical effects

Point in the kinematics: $s=3+i 10^{-16}, M_{Z}^{2}=1$

$$
\begin{aligned}
I^{\mathrm{MB} . \mathrm{m}} & =0.0696190689628302+1.705511849228807 i \\
I^{\text {tangent }} & =0.0696190691506288+1.705511853846761 i \\
I_{\text {rotation }}^{\text {logarithm }} & =0.0696190691545005+1.705511853839675 i \\
I_{\text {rotatation }}^{\text {tang }} & =0.0696190691545014+1.705511853839673 i \\
I^{\text {MBnumerics.m }} & =0.0696190691545014+1.705511853839671 i
\end{aligned}
$$

- Best optimization in MB.m is used
- 500000 evaluation points are used
- All calculations are evaluated with CUHRE (CUBA) [Hahn, 2015]
- Since $\frac{1}{t^{\alpha}}, \alpha>2$, tangent mapping gives improvement
- After contour rotation the mapping is not mandatory
- MBnumerics.m takes control over shifts, rotations, mappings

Mellin-Barnes Coefficients in the ϵ expansion, example 2

- $m_{1}=m_{t}$ and $m_{5}=m_{6}=M_{W}$
$\mathrm{SD}=1.54223108+0.24726796 i$
$+\frac{1}{\epsilon}(0.1232504106-1.0618605150 i)$
$-\frac{1}{\epsilon^{2}}\left(0.338000511+8.5 * 10^{(-10)} i\right)$
$\mathrm{MB}=1.5424526285+0.2473136625 i$
$+\frac{1}{\epsilon}(0.12324963277-1.06185992255 i)$
$+\frac{1}{\epsilon^{2}}(-0.3380005111031245+0 i)$

Mellin-Barnes Coefficients in the ϵ expansion, example 3

- $m_{1}=m_{t}$ and $m_{5}=m_{6}=M_{W}$ and $m_{4}=M_{Z}$
$\mathrm{SD}=0.1758981641+0.7088901117 i$
$\mathrm{MB}=0.1758981962+0.7088900264 i$

Mellin-Barnes Coefficients in the ϵ expansion, example 4

- $m_{6}=M_{W}$
$\mathrm{SD}=16.0354859574734+22.856028518577 i$
$\mathrm{MB}=16.0353960665095+22.855971982202 i$
$\mathrm{HPL}=16.035396066784337+22.855971982557442 i$
- MB error is coming from the application of the shifts and the Monte Carlo integration techniques
- SD erros is only from the Monte Carlo integration techniques

Conclusions and Outlook

- We calculate the asymmetry parameter A_{b} which can be related to the asymmetric pseudo-observables
- The main challenge was the calculation of massive two-loop vertex diagrams
- No reduction of integrals to masters
- New automatized tools AMBRE 3 and MBnumerics for the evaluation of the Mellin-Barnes integrals in Minkowskian kinematics together with sector decomposition programs SecDec 3 and Fiesta 3

