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Theoretical framework

Asymmetries measured at the Z pole
We study the process ete™ — (Z) — bb
Pseudo-observables, unfolded at the Z peak
forward-backward asymmetry AE%O = %AeAb

f-b left-right asymmetry A?%’OLR = %PeAh, P, is the electron polarization

2Re 1 — 4|Qp|sin® 0% 1)
14 (%e%f 1 — 4|Qplsin? 0% + 8Q3 (sin? 62;)?

Ab

Definition of the effective weak mixing angle

1 v
s 2 b b
sin® O = (1—3‘36) 2
i 4’Qb| ap ( )

vy, and ay, are effective vector coupling and axial-vector coupling of the Zbb
vertex
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Outline of the calculation

Samples of Feynman integral topologies for the Zbb vertex

After projection only scalar integrals remain, but may contain non-trivial
combinations of scalar products in the numerator.

Some non trivial cases:

o (b) my ={Mz} and my; = {Myw,m:} and ms = mg = {my, My}
o (C) mi1p = my = {Mz}

e (d) ms ={Mz} and mg = {Mw,m;} and mg = mg = {my, My}
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Outline of the calculation

Two independent numerical calculations

@ The integrals contain up to three dimensionless parameters

Mj Mg mi (MZ+ic) 3)
M2’ MZ’ M2 M3

@ Many of them contain ultraviolet and infrared singularities, even
though the divergences cancel in the final result

@ In general, it is not possible to compute all integrals analytically with
available methods and tools, but instead one has to resort to
numerical integration strategies

@ The aim is to obtain eight significant digits, to be obtained with two
completely independent numerical calculations
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Outline of the calculation

Numerical Methods

Sector decomposition
FIESTA 3 [AV.Smimov, 2014) and SecDec 3 [Borowka, et. al., 2015]

Mellin-Barnes integral approach

o With AMBRE 2 [Gluza, et. al., 2011] (AMBRE 3 [Dubovyk, et. al., 2015]) we derived
Mellin-Barnes representations for planar (non-planar) topologies. One
may use PlanarityTest [sielas, et. a1, 2013 for automatic identification.

@ Expansion in terms of € = (4 — D) /2 is done with MB [czakon, 2006],
MBresolve [a. smimov, v. smimov, 20091, barnesroutines (D. Kosower).

@ For the numerical treatment of massive Mellin-Barnes integrals with
Minkowskian kinematics, the package MBnumerics [pubovyk, Riemann, Usovitsch]
is being developed since 2015.
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Numerical Mellin-Barnes integration in Minkowskian kinematics

Mellin-Barnes integral construction

+i0c0
1 BV
Master formula: AT By = ST doA° BT |—0o|l'[v + o] (4)

—100

Loop integral with loop momenta k and propagator internal momenta g:

d d .
GLlT () =y | - d'ky...d%y T (k)

) | @ = md @ =) =Ry )

Momentum integrals are replaced by the Feynman parameter integrals:
(— 1)NUF N N o () Ne—dL+1)/2
_ (v /Hdz] 51— Y0y L) (6)

H L) = A

Introduce the master formula and eliminate all x integration variables with:

/Hdl'z qi—1 5 (1_2 ]) _ F(Ql) F(QN) (7)

Z

o i=1 I'(g+--+qn)
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Numerical Mellin-Barnes integration in Minkowskian kinematics

Mellin-Barnes Coefficients in the € expansion, example 1

@ Known analytic result for Master integrals in [agiietti, Bonciani2004]
@ Mellin-Barnes integral coefficient in the € expansion:

—(—M%)H“I‘[—zl}l“[l + 21]2F[1 + 21 — ZQ]F[_ZZ]F[I + ZQ]SF[—Zl + Zz}
2(21,22) = Z

2F[3 + Zl]F[l — 21+ zz}F[Q + z1 + Zz}
(8)
@ Mellin-Barnes integration variables z; = x; + i t;, where the z; are
fixed and ¢; € (—o0, +00)
@ Here 1 = —%, To = —%
8/16



Numerical Mellin-Barnes integration in Minkowskian kinematics

Numerical integration in MB.m and MBnumerics.m

ZzL — 2 +iln <1 iztz) , t; € (0,1), Jacobians: JZ»L = ﬁ (9)
) 11
MB.m __ LjLT1
T ey / / JEIET (a1 ) dtadts (10)
0 0
S =T 4z 77% 7]-7 b T VSRR 11
2 T 4+ 1 +tan(—7rti) € (0,1), Jacobians: J, Sin2(r ;) (11)
11
IMBnumcrics.m(nl’nz 2 //J{F 2T Zl 7z:2>d7f1d752 (12)
00

e Ny S Integel“s, ShlftS [Anastasiou, Daleo, 2006]
o & Reals, rotations [Freitas, Huang, 2010]
@ tangent mapping imposes Z[[], I';] — I[ezi ln(ri)]

o [MBuumericsm (o) is now a discrete function in n; D



Numerical Mellin-Barnes integration in Minkowskian kinematics

Asymptotic behavior in generalized spherical coordinates
for r — oo

Euclidean kinematics

_BT
Re (Tlggol) ~ BTT’ B >0 and « arbitrary (13)

for any angular direction

Minkowskian kinematics (physical momenta)

1
Re ( lim I) ~ —, a arbitrary (14)

r—00 r

@ logarithmic mapping always has an infinity at the boundary
@ For a > 2 tangent mapping has no infinities at the boundaries
@ a < 2 in either mapping the integrand is not absolutely convergent



Numerical Mellin-Barnes integration in Minkowskian kinematics

Rotations and Shifts

Contour rotations 0. The transformations z; = x; + (i + 0) t; do not cross

poles and may introduce 8 > 0 for any angular direction in Minkowskian

kinematics.

Contour shifts n;. Treat the Mellin-Barnes integrals as discrete functions:

2 = T; +n; + iti.

May improve convergence by shifting: %e(rlgglol') ~ m a> 2.

Add up all crossed poles (integrals with one dimension less)

May reduce the order of magnitude of the shifted integral

The shifted integral and its poor knowledge becomes numerically less

important

o In effect, the procedure consists of a summing over a finite number of
residues with a controlled remainder.
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Numerical Mellin-Barnes integration in Minkowskian kinematics

Numerical effects

Point in the kinematics: s = 3 + 410716, M% =1

TMB™ — 0.0696190689628302 + 1.705511849228807 i
I%08ent — (),0696190691506288 + 1.705511853846761 i

qlogarithm _ ) 0606190691545005 + 1.705511853839675 i

rotation

TPt () 0696190691545014 + 1.705511853839673 i

rotation

[MBnumericsm _ () 0606190691545014 + 1.705511853839671

Best optimization in MB.m is used

500000 evaluation points are used

All calculations are evaluated with CUHRE (CUBA) [ahn, 2015]
Since t%, «a > 2, tangent mapping gives improvement

After contour rotation the mapping is not mandatory
MBnumerics.m takes control over shifts, rotations, mappings
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Numerical Mellin-Barnes integration in Minkowskian kinematics

Mellin-Barnes Coefficients in the € expansion, example 2

@ m1 = my; and ms = mg = Mw
SD = 1.54223108 + 0.24726796i
+1(0.1232504106 — 1.06186051504)
—4(0.338000511 + 8.5 x 10(~10)5)
MB = 1.5424526285 4 0.2473136625i
+1(0.12324963277 — 1.06185992255)
+%(—0.3380005111031245 + 07)
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Numerical Mellin-Barnes integration in Minkowskian kinematics

Mellin-Barnes Coefficients in the e expansion, example 3

@ my = my and ms = mg = My and my = My
SD = 0.1758981641 4 0.7088901117¢
MB = 0.1758981962 + 0.70889002641
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Numerical Mellin-Barnes integration in Minkowskian kinematics

Mellin-Barnes Coefficients in the € expansion, example 4

@ Mg = MW
SD = 16.0354859574734  + 22.8560285185774
MB = 16.0353960665095 + 22.8559719822021
HPL = 16.035396066784337 + 22.855971982557442i
@ MB error is coming from the application of the shifts and the Monte
Carlo integration techniques
@ SD erros is only from the Monte Carlo integration techniques
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Conclusions and Outlook

Conclusions and Outlook

@ We calculate the asymmetry parameter Aj, which can be related to
the asymmetric pseudo-observables

@ The main challenge was the calculation of massive two-loop vertex
diagrams

@ No reduction of integrals to masters

o New automatized tools AMBRE 3 and MBnumerics for the evaluation
of the Mellin-Barnes integrals in Minkowskian kinematics together
with sector decomposition programs SecDec 3 and Fiesta 3
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