1. Stationary phase contour/manifold

$$I(s,t,\ldots) = \int_{i\mathbb{R}\times\ldots\times i\mathbb{R}} dz_1\ldots dz_n F(z) = \int_{i\mathbb{R}\times\ldots\times i\mathbb{R}} dz_1\ldots dz_n e^{-[\operatorname{Re} f(z) + i\operatorname{Im} f(z)]}$$

Integrate over a *n*-dimensional manifold \mathcal{M} along which Imf = const:

$$I(s,t,\ldots) = e^{-i\operatorname{Im} f} \int_{\mathcal{M}} dt_1 \ldots dt_n \operatorname{Jac}(t,z) e^{-\operatorname{Re} f}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \mathcal{M} is parametrized by t_1, t_2, \ldots, t_n .

2. Steepest descent contour C

$$\begin{split} \mathcal{C}(z_*) &= \{ z(\tau) \in \mathbb{C}^n : \frac{dz_i}{d\tau} = (\partial_{z_i} f)^*, \quad z(0) = z_*, \quad \partial_{z_i} f(z_*) = 0 \} \\ \text{Along } \mathcal{C}(z_*) &: \\ \text{Im } f = \text{const}, \quad \frac{d}{d\tau} \text{Re } f < 0 \\ \text{E.g. for } F(z) &= (-s)^{-z} \frac{\Gamma^3(-z)\Gamma(z+1)}{\Gamma(-2z)} \text{ and } s = -1/20 &: \end{split}$$

 Natural candidate for \mathcal{M} , so-called Lefschetz thimble $\mathcal{J}(z_*)$:

 $\mathcal{J}(z_*) =$ a union of all steepest descent contours $\mathcal{C}(z_*)$ dim_R $\mathcal{J}(z_*) = n$

But $\frac{dz_i}{d\tau} = (\partial_{z_i} f)^*$ gives dependence only on one coordinate. Dependence on t_2, \ldots, t_n is not known!

In other words, one needs additional n-1 operators $\mathcal{O}_k(f)$ which restrict hypersurface Im f = const to \mathcal{M} :

Im
$$f = \text{const}, \quad \mathcal{O}_k(f) = ? \quad (k = 1, \dots, n-1)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

4. 1-dimensional case

Im f = const is enough to find $\mathcal{J}(z_*)$ in n = 1 case:

$$\dim_{\mathbb{R}} \{ z \in \mathbb{C} \, | \, \operatorname{Im} f = \operatorname{const} \} = 1 = \dim_{\mathbb{R}} \mathcal{J}(z_*)$$

E.g. for $F(z) = (-s)^{-z} \frac{\Gamma^3(-z)\Gamma(z+1)}{\Gamma(-2z)}$ and s = -1/20:

5. 1-dimensional case

$$F(z) = (-s)^{-z} \frac{\Gamma^3(-z)\Gamma(z+1)}{\Gamma(-2z)}$$
 for $s = -1/20$ and $s = 1 + i0^+$:

6. 1-dimensional case

$$I(s) = \sum_{k=1,2} \frac{e^{-i \operatorname{Im} f|_{\mathcal{J}_k}}}{2\pi i} \int_{\mathcal{J}_k} dz \, e^{-\operatorname{Re} f} + \frac{1}{2\pi i} \int_{\mathcal{A}} dz \, F + \sum_{C_0 \to C} \operatorname{Res} F$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで