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M and U

Different neutrino mass models, e.g. type-LIl,1l1l seesaw models,
radiative, etc. can be embedded into general M-form:

_( of{m} mp T (Vi Vn

@ We know much about Mg, V) (experiments), also about Vi,
(indirectly), and Vj, (model dependent)

@ Certainly, they are interconnected, how much can matrix theory
help formally and in practical way to dig in U and M?

— Poster by Wojtek Flieger on mass spectrum.
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In this talk: Focus on U

K. Bielas, W. Flieger, JG, M. Gluza
"A novel approach to neutrino mixing analysis based on singular
values", arXiv:1708.09196

Useful Appendices, e.g.:

Theorem

Krein-Milman

Let X be a topological vector space in which the dual space X*
separates points. If A is compact, convex set in X, then A is closed,
convex hull of its extreme points.

Proposition

Once a set of matrix contractions is given, the convex hull with vertices
at this set contains only contractions.

v

Proof in 1708.09196, etc.


https://arxiv.org/abs/1708.09196
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Matrix theory and convex geometry

@ R. A. Horn and C. R. Johnson,

Matrix analysis (Cambridge U. Press, 2012).
@ S. G. Krantz, Convex Analysis (Chapman and Hall, 2014).
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In physics (and theory):

Singular values (~ known), contractions, dilations (poorly known)

We try to bridge mathematical knowledge to neutrino mixing
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What is measured?

|
SNO
KamLLAND Solar CC/NC ratio
V. Disappearance

Solar NC fluxes

Mark Ros}-Lonergan'» IPPP, D+rham University

Janusz Gluza

Daya Bay
V. Disapearance

MINOS/T2K
V. Appearance

INOS/T2K
vy, Disappearance

OPERA and SK
Vr Appearance
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Neutrino mixing in the Standard Model

v = (Upas)ai™

Mixing matrix

1 0 0 C1i3 0 81367’5 Ci2 s12 0
Upmns = | 0 c3  Se3 0o 1 0 —S12 Cro O
0 —sp3 Co3 —S136'6 0 0 0 1

Ci3

Experimental values of mixing parameters

010 € [31.38°,35.99°], 63 € [38.4°,53.0°),
f13 € [7.99°,8.91°], &€ [0,27]

Janusz Gluza

6/25



|
Full experimental data - interval matrix

01,2,3,0
Upns ——— Vosc

CP Invariant Case

0.799 + 0.845 0.514 +0.582  0.139 + 0.155
Vose = | —0.538 =+ —0.408 0.414 =+ 0.624 0.615 + 0.791
0.22 <+ 0.402 —0.73 + —0.567 0.595 + 0.776

Vose —— BSM
No much clues for that (usually bounds on masses and couplings):
@ 20 million Z-boson decays, yielding N, = 2.9840 + 0.0082

@ Liquid Scintillator Neutrino Detector (LSND) experiment an excess of 7
appearing in a mostly 7, beam at 3.80-level — sterile
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Extended mixing - BSM models

Complete mixing
VDN Vose Vi p(m) _y p(m)
o)y | — Vie Vi pm | = p(m)
Observable part

VD = (Vose)a\™ + (Vin) oo™

@ /
—_—xwt —,
SM part BSM part

A standard approach to deviation from unitarity

BeowumsPoys = [(1+mNI[(T+n)N]T =1+

N — Unitary

n, € — Hermitian



Our approach: mixing matrix and singular values

Singular values o; of a given matrix A are positive square roots of the
eigenvalues ); of the matrix AAT

0i(A) = \/Ni(AAD)

Properties:
@ generalization of eigenvalues

@ always positive
@ stable under small perturbations (controlling error estimation)

Unitary matrices

uut =1 = diag(1,1,...,1) = all singular values equal to 1

9/25
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Characterization of physical mixing matrices

(Vosc Vlh) ?
Vi Vin

Contraction

[ Vosc|| < 1

Janusz Gluza
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Contractions

1Al <1

Operator norm (spectral norm)

IA]l := sup [[AX]| = omax(A)

lIx[=1
Contractions as submatrices of the unitary matrix

H( Vosc Vlh

Vi Vi >H = 1= [IVosol| =1
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Unitarity and Contraction: a toy example
For UPMNS holds

ZPaﬁ:1a

However, for a nonunitary U this relation is not fulfilled. ©; = ©1 + ¢

U— cos©y sin©y
~ \—sin®; cosO,

In this case we get, Aj o (m? — m?) £
Pee + Pe,, = 1 4 4esin® Agy sin ©4 cos ©1 cos 20+ + O(?)

Pue+ P, =1 — 4esin® Agy sin ©1 cos ©4 cos 201 + O(e?)

Peculiar fact:
Ul =1

Non-physical parametrization!
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Statistics of Contractions in Vs

Experimental mixing matrix

0.799 + 0.845 0.514 +0.582  0.139 + 0.155
Vose = | —0.538 =+ —0.408 0.414 =+ 0.624 0.615+ 0.791
0.22 <+ 0.402 —0.73 + —0.567 0.595 + 0.776

Contractions: only 4 %

Non-physical: 96%!

Contractions as a convex combination of unitary matrices

m m
V:Za,-U,-, aj > 0 and Zalzl
i=1 i=1

m m
V=1 il <D el Uil = 1
i=1 i=1
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Physical Region

m m
)HV(UPMNS) = {Z a;U ’ Ui e U(S)a aty...,am > 0, Z aj=1,
i i=1

i=1

012,013,023 and ¢ given by experimental values}

Contraction X
Data

Contraction
Data

Contraction
Data X

Janusz Gluza
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Unitary dilation

Contractions ot
contractions
Upmns — Vosc Q

BSM?

V e q Jiation < v V”’)EU—>UUT:I
Vi Vin

CS decomposition

()-8 ) ($E5) (4 3)
Vi Vin 0 W ol o I, 0o a

where C > 0 and S > 0 are diagonal matrices satisfying C? + S? = I,
Wy, Qy € Mpyp and Wh, Qo € My are unitary matrices
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Unitary dilation: an example

As an illustration let us take two Upyns matrices

U1 . 912 =31 .380, 023 = 38.40, 913 = 7.990,
Us : 012 = 35.99°, 03 = 52.8°, 615 = 8.90°,

and let us construct a contraction as

The set of singular values

1 1
= §U1 + §U27

o1(V') =1, o2(V’) = 0.991, o5(V’) = 0.991

for which we get the following unitary dilation

0.822411 0.548133
—0.468394  0.520442
U= 0.311417  —0.643236

—0.0524981 0.122242
—0.0671638  0.00403263

Janusz Gluza

0.0169583 — 0.0368511

— 0.133845 0.0197681

0.0250273 0.130689
0.599485 0.788536
0.788536 —0.599485
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Quark Sector

Wolfenstein parametrization

Sio =\, So3 = AA2, .51361'(s = A)\S(p + I77)

2 .
1— % A ] A)\3(p —in) )
Verm = -\ p A2 + 0\
AN3(p —in) —AN? 1

Distribution of contractions

All matrices within Vi are contractions with 2%, accuracy

0, _
6% of [[Voxm|l = 1.002, ) 957 [ Vise|| < 1.178
94% of ||VCKM|| =1.001 4 % ~ 18 %
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Summary

@ Interval matrix V¢ allows for independent analysis of mixing data
@ Matrix theory and convex geometry offer suitable tools for that
@ Singular values enrich studies beyond unitarity

@ Contractions are natural to describe interplay between SM and
BSM mixing theories in Vysc. They define physical region Q by
Upnns convex combination.

@ There is a lot of space for BSM in V.
Dilations allow for appropriate construction of complete unitary
matrices

Outlook: Advanced theory for M and M «+— U.
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Backup slides
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Matrix norm

A matrix norm is a function || - || from the set of all complex (real
matrices) into R that satisfies the following properties

|A|| > 0and [|[A| =0<= A =0,

Al = |af[|All, a € C,

|IA+ Bl < [[All+[IBIl,

IAB] < [|Alll| B

Examples of matrix norms
4 Spectral norm: HAH = MaX||x||,=1 HAXHZ e 0'1(A)

@ Frobenius norm: ||A||r = \/Tr(ATA) = \/Z,’-?j:1 a2 = \/27:1 o2
@ maximum absolute column sum norm:

[All1 = max x|, =1 [AX[[c = max; >_; |aj]
@ maximum absolute row sum norm:

[Alloc = MaX) x| ,=1 [|AX][c = max; >_;|ajl
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Weyl's inequality for singular values

Let A and B be a m x n matrices and let ¢ = min{m, n}. Then

o/(A+ B) < 0i(A) + 0j_is1(B) for i < j
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Proof of the toy example

Let us calculate UUT and U' U for U, s(c); = sin(cos)®;, i=1,2

uuT — 1 S1Co — SC4
S1C> — SoCy 1

T C12 + Sg C1S1 — S2C2
U U = 2 2
C1S1 — SoCo 87+ G5

As for the real A we have | AT A|| = || AAT|| = ||A||?, we can focus only
on one of this products. Let us then write UUT in the following form
UUT _ < 1 S1Co — S2Cq )
S1C> — SoCq 1

_ 10 + 0 S1C2 — S2Cq4
VL0 1 S1Co — SoC4 0
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Proof of the toy example

This can be simplified into

wr-(12)+(3 3)=rrs

where s3 = sin ©3 = sin(©1 — ©5).

Let us observe that eigenvalues of B are equal +s3.

Using fact that spectral norm is unitarily invariant and matrix B is
symmetric, we get

|UUT| = |11+ B] = [WT(I+ B)W| = |1+ WTBW|
= |1+ D]

where W is an orthogonal matrix such that
WTBW = D = diag(ss, —Ss3)
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Proof of the toy example

1+ 53 0
0 1—83 )’

its operator norm, i.e., the largest singular value equals

Since I + D equals

1+Sg ingZO,
1—-53 ifsg3<0

we can see that by adding B to identity matrix we can not decrease

spectral norm
1=l <1+ B||=[lUUT|

Thus
||| > 1
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Algorithm

The following steps lead to a contraction settled by Upyns and then to its unitary dilation of a
minimal dimension

1) Select a finite number of unitary matrices U;, i = 1,2, ...m, within experimentally allowed
range of parameters 643, 023 and 4.

2) Construct a contraction Uy as a convex combination of selected matrices U;

m m
V=> aili, ai,am>0, Y ai=1.
i=1 i=1

3) Find singular value decomposition of V, i.e.
V=wzQ]

where Wy, Qq are unitary, X is diagonal, and determine number 7 of singular values strictly less
than 1.

4) Use CS decomposition
ViV )
U= =
( Vi Vhn
I 0] O
(W‘O) 0 c|-s (Q1T OT>
0 W) 5 57T 0 Q
to find the unitary dilation U € M3, )« (3+n) Of contraction Uy.



