Singular values, contractions, dilations and neutrino mixing analysis*

Janusz Gluza

In collaboration with:
Krzysztof Bielas \& Wojciech Flieger (U. Silesia) Marek Gluza (FU Berlin)

44ZFP, Wrocław 10-15.09.2017

* Dedicated to Marek Zrałek.

M and U

Different neutrino mass models, e.g. type-I,II,III seesaw models, radiative, etc. can be embedded into general M-form:

$$
M=\left(\begin{array}{cc}
0\left\{m_{L}\right\} & m_{D} \\
m_{D}^{T} & m_{R}
\end{array}\right), \quad M_{\text {diag }}=U^{T} M U, \quad U=\left(\begin{array}{cc}
V_{\| I} & V_{l h} \\
V_{h 1} & V_{h h}
\end{array}\right)
$$

- We know much about $M_{\text {diag }}, V_{I I}$ (experiments), also about $V_{l h}$ (indirectly), and $V_{h h}$ (model dependent)
- Certainly, they are interconnected, how much can matrix theory help formally and in practical way to dig in U and M ?
\longrightarrow Poster by Wojtek Flieger on mass spectrum.

In this talk: Focus on U

K. Bielas, W. Flieger, JG, M. Gluza
"A novel approach to neutrino mixing analysis based on singular values", arXiv:1708.09196

Useful Appendices, e.g.:
Theorem
Krein-Milman
Let X be a topological vector space in which the dual space X^{*} separates points. If A is compact, convex set in X, then A is closed, convex hull of its extreme points.

Proposition

Once a set of matrix contractions is given, the convex hull with vertices at this set contains only contractions.

Proof in 1708.09196, etc.

Matrix theory and convex geometry

- R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge U. Press, 2012).
- S. G. Krantz, Convex Analysis (Chapman and Hall, 2014).

Matrix theory and convex geometry

- R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge U. Press, 2012).
- S. G. Krantz, Convex Analysis (Chapman and Hall, 2014).
- J. C. Allen and D. Arceo, Corporate Author: Space and Naval Warfare Systems Center San Diego CA, Matrix Dilations via Cosine-Sine Decomposition (2006), Technical rept., http://www.dtic.mil/docs/citations/ADA446226.

Matrix theory and convex geometry

- R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge U. Press, 2012).
- S. G. Krantz, Convex Analysis (Chapman and Hall, 2014).
- J. C. Allen and D. Arceo, Corporate Author: Space and Naval Warfare Systems Center San Diego CA, Matrix Dilations via Cosine-Sine Decomposition (2006), Technical rept., http://www.dtic.mil/docs/citations/ADA446226.

In physics (and theory):
Singular values (\sim known), contractions, dilations (poorly known)

Matrix theory and convex geometry

- R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge U. Press, 2012).
- S. G. Krantz, Convex Analysis (Chapman and Hall, 2014).
- J. C. Allen and D. Arceo, Corporate Author: Space and Naval Warfare Systems Center San Diego CA, Matrix Dilations via Cosine-Sine Decomposition (2006), Technical rept., http://www.dtic.mil/docs/citations/ADA446226.

In physics (and theory):
Singular values (\sim known), contractions, dilations (poorly known)

We try to bridge mathematical knowledge to neutrino mixing

What is measured?

Neutrino mixing in the Standard Model

$$
\nu_{\alpha}^{(f)}=\left(U_{P M N S}\right)_{\alpha i} \nu_{i}^{(m)}
$$

Mixing matrix

$U_{P M N S}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$
Experimental values of mixing parameters

$$
\begin{array}{ll}
\theta_{12} \in\left[31.38^{\circ}, 35.99^{\circ}\right], & \theta_{23} \in\left[38.4^{\circ}, 53.0^{\circ}\right] \\
\theta_{13} \in\left[7.99^{\circ}, 8.91^{\circ}\right], & \delta \in[0,2 \pi]
\end{array}
$$

Full experimental data - interval matrix

$$
U_{P M N S} \xrightarrow{\theta_{1,2,3}, \delta} V_{O S C}
$$

CP Invariant Case

$$
\mathrm{V}_{\mathrm{osc}}=\left(\begin{array}{ccc}
0.799 \div 0.845 & 0.514 \div 0.582 & 0.139 \div 0.155 \\
-0.538 \div-0.408 & 0.414 \div 0.624 & 0.615 \div 0.791 \\
0.22 \div 0.402 & -0.73 \div-0.567 & 0.595 \div 0.776
\end{array}\right)
$$

$$
V_{\text {OSC }} \xrightarrow{?} B S M
$$

No much clues for that (usually bounds on masses and couplings):
(1) 20 million Z-boson decays, yielding $N_{\nu}=2.9840 \pm 0.0082$
(2) Liquid Scintillator Neutrino Detector (LSND) experiment an excess of $\bar{\nu}_{e}$ appearing in a mostly $\bar{\nu}_{\mu}$ beam at 3.8σ-level \longrightarrow sterile

Extended mixing - BSM models

Complete mixing

$$
\binom{\nu^{(f)}}{\hat{\nu}^{(f)}}=\left(\begin{array}{cc}
V_{\text {osc }} & V_{l h} \\
V_{h l} & V_{h h}
\end{array}\right)\binom{\nu^{(m)}}{\hat{\nu}^{(m)}} \equiv U\binom{\nu^{(m)}}{\hat{\nu}^{(m)}}
$$

Observable part

$$
\nu_{\alpha}^{(f)}=\underbrace{\left(V_{\text {osc }}\right)_{\alpha i} \nu_{i}^{(m)}}_{\text {SM part }}+\underbrace{\left(V_{\text {lh }}\right)_{\alpha j} \hat{\nu}_{j}^{(m)}}_{\text {BSM part }}
$$

A standard approach to deviation from unitarity

$$
\begin{gathered}
\bigcup_{P M N S} \bigotimes_{P M N S}^{\dagger} \equiv[(1+\eta) N][(1+\eta) N]^{\dagger}=1+\epsilon \\
N-\text { Unitary } \\
\eta, \epsilon-\text { Hermitian }
\end{gathered}
$$

Our approach: mixing matrix and singular values

Singular values σ_{i} of a given matrix A are positive square roots of the eigenvalues λ_{i} of the matrix $A A^{\dagger}$

$$
\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A A^{\dagger}\right)}
$$

Properties:

- generalization of eigenvalues
- always positive
- stable under small perturbations (controlling error estimation)

Unitary matrices

$$
U U^{\dagger}=I=\operatorname{diag}(1,1, \ldots, 1) \Longrightarrow \text { all singular values equal to } 1
$$

Characterization of physical mixing matrices

$$
\left(\begin{array}{cc}
V_{\text {osc }} & V_{l h} \\
V_{h l} & V_{h h}
\end{array}\right) ?
$$

Contraction

$$
\left\|V_{o s c}\right\| \leq 1
$$

Contractions

$$
\|A\| \leq 1
$$

Operator norm (spectral norm)

$$
\|A\|:=\sup _{\|x\|=1}\|A x\|=\sigma_{\max }(A)
$$

Contractions as submatrices of the unitary matrix

$$
\left\|\left(\begin{array}{cc}
V_{o s c} & V_{l h} \\
V_{h l} & V_{h h}
\end{array}\right)\right\|=1 \Longrightarrow\left\|V_{o s C}\right\| \leq 1
$$

Unitarity and Contraction: a toy example

For $U_{P M N S}$ holds

$$
\sum_{\alpha} P_{\alpha \beta}=1
$$

However, for a nonunitary U this relation is not fulfilled. $\Theta_{2}=\Theta_{1}+\epsilon$

$$
U=\left(\begin{array}{cc}
\cos \Theta_{1} & \sin \Theta_{1} \\
-\sin \Theta_{2} & \cos \Theta_{2}
\end{array}\right)
$$

In this case we get, $\Delta_{i j} \propto\left(m_{i}^{2}-m_{j}^{2}\right) \frac{L}{E}$

$$
\begin{aligned}
& P_{e e}+P_{e \mu}=1+4 \epsilon \sin ^{2} \Delta_{21} \sin \Theta_{1} \cos \Theta_{1} \cos 2 \Theta_{1}+\mathcal{O}\left(\epsilon^{2}\right) \\
& P_{\mu e}+P_{\mu \mu}=1-4 \epsilon \sin ^{2} \Delta_{21} \sin \Theta_{1} \cos \Theta_{1} \cos 2 \Theta_{1}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Peculiar fact:

$$
\|U\| \geq 1
$$

Non-physical parametrization!

Statistics of Contractions in $V_{\text {osc }}$

Experimental mixing matrix

$$
\mathrm{V}_{\text {osc }}=\left(\begin{array}{ccc}
0.799 \div 0.845 & 0.514 \div 0.582 & 0.139 \div 0.155 \\
-0.538 \div-0.408 & 0.414 \div 0.624 & 0.615 \div 0.791 \\
0.22 \div 0.402 & -0.73 \div-0.567 & 0.595 \div 0.776
\end{array}\right)
$$

Contractions: only 4 \%

Non-physical: 96\%!

Contractions as a convex combination of unitary matrices

$$
\begin{gathered}
\boldsymbol{V}=\sum_{i=1}^{m} \alpha_{i} U_{i}, \quad \alpha_{i} \geq 0 \text { and } \sum_{\mathrm{i}=1}^{\mathrm{m}} \alpha_{1}=1 \\
\|\boldsymbol{V}\|=\left\|\sum_{i=1}^{m} \alpha_{i} \boldsymbol{U}_{i}\right\| \leq \sum_{i=1}^{m} \alpha_{i}\left\|\boldsymbol{U}_{i}\right\|=1
\end{gathered}
$$

Physical Region

$$
\Omega:=\operatorname{conv}\left(U_{P M N S}\right)=\left\{\sum_{i=1}^{m} \alpha_{i} U_{i} \mid U_{i} \in U(3), \alpha_{1}, \ldots, \alpha_{m} \geq 0, \sum_{i=1}^{m} \alpha_{i}=1,\right.
$$

$\theta_{12}, \theta_{13}, \theta_{23}$ and δ given by experimental values\}

Unitary dilation

Contractions

$$
U_{P M N S} \rightarrow V_{\text {OSC }} \xrightarrow{\text { contractions }} \Omega
$$

BSM?

$$
V \in \Omega \xrightarrow{\text { dilation }}\left(\begin{array}{cc}
V & V_{l h} \\
V_{h 1} & V_{h h}
\end{array}\right) \equiv U \rightarrow U U^{\dagger}=1
$$

CS decomposition

$$
U \equiv\left(\begin{array}{cc}
V & V_{l h} \\
V_{h l} & V_{h h}
\end{array}\right)=\left(\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right)\left(\begin{array}{c|cc}
C & -S & 0 \\
\hline S & C & 0 \\
0 & 0 & I_{m-n}
\end{array}\right)\left(\begin{array}{cc}
Q_{1}^{\dagger} & 0 \\
0 & Q_{2}^{\dagger}
\end{array}\right)
$$

where $C \geq 0$ and $S \geq 0$ are diagonal matrices satisfying $C^{2}+S^{2}=I_{n}$ $W_{1}, Q_{1} \in M_{n \times n}$ and $W_{2}, Q_{2} \in M_{m \times m}$ are unitary matrices

Unitary dilation: an example

As an illustration let us take two $U_{P M N S}$ matrices

$$
\begin{aligned}
& U_{1}: \theta_{12}=31.38^{\circ}, \theta_{23}=38.4^{\circ}, \theta_{13}=7.99^{\circ}, \\
& U_{2}: \theta_{12}=35.99^{\circ}, \theta_{23}=52.8^{\circ}, \theta_{13}=8.90^{\circ},
\end{aligned}
$$

and let us construct a contraction as

$$
V^{\prime}=\frac{1}{2} U_{1}+\frac{1}{2} U_{2},
$$

The set of singular values

$$
\sigma_{1}\left(V^{\prime}\right)=1, \sigma_{2}\left(V^{\prime}\right)=0.991, \sigma_{3}\left(V^{\prime}\right)=0.991
$$

for which we get the following unitary dilation

$$
U=\left(\begin{array}{ccc|cc}
0.822411 & 0.548133 & 0.146854 & & 0.0169583 \\
-0.0368511 \\
-0.468394 & 0.520442 & 0.70103 & -0.133845 & 0.0197681 \\
0.311417 & -0.643236 & 0.686702 & 0.0250273 & 0.130689 \\
\hline-0.0524981 & 0.122242 & -0.0336064 & 0.599485 & 0.788536 \\
-0.0671638 & 0.00403263 & 0.119588 & 0.788536 & -0.599485
\end{array}\right)
$$

Quark Sector

Wolfenstein parametrization

$$
\begin{gathered}
s_{12}=\lambda, \quad s_{23}=A \lambda^{2}, \quad s_{13} e^{i \delta}=A \lambda^{3}(\rho+i \eta) \\
V_{C K M}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
\end{gathered}
$$

Distribution of contractions
All matrices within $V_{C K M}$ are contractions with 2% accuracy

$$
\begin{array}{lll}
6 \% \text { of }\left\|\mathrm{V}_{\mathrm{CKM}}\right\|=1.002, & 0.961 \leq\left\|\mathrm{V}_{\mathrm{osc}}\right\| \leq 1.178 \\
94 \% \text { of }\left\|\mathrm{V}_{\mathrm{CKM}}\right\|=1.001 & \sim 4 \% & \sim 18 \%
\end{array}
$$

Summary

- Interval matrix $V_{\text {osc }}$ allows for independent analysis of mixing data
- Matrix theory and convex geometry offer suitable tools for that
- Singular values enrich studies beyond unitarity
- Contractions are natural to describe interplay between SM and BSM mixing theories in $V_{\text {osc }}$. They define physical region Ω by $U_{P M N S}$ convex combination.
- There is a lot of space for BSM in $V_{\text {osc }}$.

Dilations allow for appropriate construction of complete unitary matrices

Outlook: Advanced theory for M and $M \longleftrightarrow U$.

Backup slides

Matrix norm

A matrix norm is a function $\|\cdot\|$ from the set of all complex (real matrices) into \mathbb{R} that satisfies the following properties

$$
\begin{aligned}
& \|A\| \geq 0 \text { and }\|\mathrm{A}\|=0 \Longleftrightarrow \mathrm{~A}=0 \\
& \|\alpha A\|=|\alpha|\|A\|, \alpha \in C \\
& \|A+B\| \leq\|A\|+\|B\| \\
& \|A B\| \leq\|A\|\|B\|
\end{aligned}
$$

Examples of matrix norms

- spectral norm: $\|A\|=\max _{\|x\|_{2}=1}\|A x\|_{2}=\sigma_{1}(A)$
- Frobenius norm: $\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A^{\dagger} A\right)}=\sqrt{\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}$
- maximum absolute column sum norm:

$$
\|A\|_{1}=\max _{\|x\|_{1}=1}\|A x\|_{\infty}=\max _{j} \sum_{i}\left|a_{i j}\right|
$$

- maximum absolute row sum norm:

$$
\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|
$$

Weyl's inequality for singular values

Let A and B be a $m \times n$ matrices and let $q=\min \{m, n\}$. Then

$$
\sigma_{j}(A+B) \leq \sigma_{i}(A)+\sigma_{j-i+1}(B) \text { for } i \leq j
$$

Proof of the toy example

Let us calculate $U U^{\top}$ and $U^{\top} U$ for $U, s(c)_{i} \equiv \sin (\cos) \Theta_{i}, i=1,2$

$$
\begin{aligned}
& U U^{T}=\left(\begin{array}{cc}
1 & s_{1} c_{2}-s_{2} c_{1} \\
s_{1} c_{2}-s_{2} c_{1} & 1
\end{array}\right) \\
& U^{T} U=\left(\begin{array}{cc}
c_{1}^{2}+s_{2}^{2} & c_{1} s_{1}-s_{2} c_{2} \\
c_{1} s_{1}-s_{2} c_{2} & s_{1}^{2}+c_{2}^{2}
\end{array}\right)
\end{aligned}
$$

As for the real A we have $\left\|A^{T} A\right\|=\left\|A A^{T}\right\|=\|A\|^{2}$, we can focus only on one of this products. Let us then write $U U^{\top}$ in the following form

$$
\begin{aligned}
U U^{T} & =\left(\begin{array}{cc}
1 & s_{1} c_{2}-s_{2} c_{1} \\
s_{1} c_{2}-s_{2} c_{1} & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
0 & s_{1} c_{2}-s_{2} c_{1} \\
s_{1} c_{2}-s_{2} c_{1} & 0
\end{array}\right)
\end{aligned}
$$

Proof of the toy example

This can be simplified into

$$
U U^{T}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
0 & s_{3} \\
s_{3} & 0
\end{array}\right) \equiv I+B
$$

where $s_{3} \equiv \sin \Theta_{3}=\sin \left(\Theta_{1}-\Theta_{2}\right)$.
Let us observe that eigenvalues of B are equal $\pm s_{3}$.
Using fact that spectral norm is unitarily invariant and matrix B is symmetric, we get

$$
\begin{aligned}
\left\|U U^{T}\right\| & =\|I+B\|=\left\|W^{T}(I+B) W\right\|=\left\|I+W^{T} B W\right\| \\
& =\|I+D\|
\end{aligned}
$$

where W is an orthogonal matrix such that

$$
W^{T} B W=D=\operatorname{diag}\left(s_{3},-s_{3}\right)
$$

Proof of the toy example

Since $I+D$ equals

$$
\left(\begin{array}{cc}
1+s_{3} & 0 \\
0 & 1-s_{3}
\end{array}\right)
$$

its operator norm, i.e., the largest singular value equals

$$
\begin{array}{r}
1+s_{3} \quad \text { if } s_{3} \geq 0 \\
1-s_{3} \quad \text { if } s_{3}<0
\end{array}
$$

we can see that by adding B to identity matrix we can not decrease spectral norm

$$
1=\|I\| \leq\|I+B\|=\left\|U U^{T}\right\|
$$

Thus

$$
\|U\| \geq 1
$$

Algorithm

The following steps lead to a contraction settled by $U_{P M N S}$ and then to its unitary dilation of a minimal dimension

1) Select a finite number of unitary matrices $U_{i}, i=1,2, \ldots m$, within experimentally allowed range of parameters θ_{13}, θ_{23} and δ.
2) Construct a contraction U_{11} as a convex combination of selected matrices U_{i}

$$
V=\sum_{i=1}^{m} \alpha_{i} U_{i}, \quad \alpha_{1}, \ldots, \alpha_{m} \geq 0, \quad \sum_{i=1}^{m} \alpha_{i}=1
$$

3) Find singular value decomposition of V, i.e.

$$
V=W_{1} \Sigma Q_{1}^{\dagger}
$$

where W_{1}, Q_{1} are unitary, Σ is diagonal, and determine number η of singular values strictly less than 1.
4) Use CS decomposition

$$
\begin{aligned}
U= & \left(\begin{array}{cc}
V & V_{l h} \\
V_{h l} & V_{h h}
\end{array}\right)= \\
& \left(\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right)\left(\begin{array}{cc|c}
I_{r} & 0 & 0 \\
0 & C & -S \\
\hline 0 & S & C
\end{array}\right)\left(\begin{array}{cc}
Q_{1}^{\dagger} & 0 \\
0 & Q_{2}^{\dagger}
\end{array}\right)
\end{aligned}
$$

to find the unitary dilation $U \in \mathbb{M}_{(3+\eta) \times(3+\eta)}$ of contraction U_{11}.

