Precise tests of the Standard Model will continue to rely on Feynman loop diagrams

Janusz Gluza

in collaboration with

levgen Dubovyk, Ayres Freitas, Tord Riemann, Johann Usovitsch

BALATON2018 - Feynman Memorial Meeting

Balaton, Hungary, 18 September 2018

Outline

1 50 years of the SM

2 EWPOs, present status and future demands

- ③ Needs for EWPOs beyond 2-loops
- 4 Bright perspective: why?

5 Backup slides

- No physics without Feynman: Feynman rules
- R. Feynman visions in physics and art
- Discussion of NNNLO accuracy
- References

arXiv:1809.01830

Standard Model Theory for the FCC-ee: The Tera-Z

A. Blondel (Geneva U.), J. Gluza (Silesia U.), S. Jadach (Cracow, INP), P. Janot (CERN), T. Riemann (Silesia U. & DESY, Zeuthen), A. Akhundov (Valencia U. & Baku, Inst. Phys.), A. Arbuzov (Dubna, JINR), R. Boels (Hamburg U., Inst. Theor. Phys. III), S. Bondarenko (Dubna, JINR), S. Borowka (CERN) et al. Show all 38 authors

Sep 6, 2018 - 243 pages

Conference: <u>C18-01-12</u> BU-HEPP-18-04, CERN-TH-2018-145, IFJ-PAN-IV-2018-09, KW 18-003, MITP/18-052, MPP-2018-143, SI-HEP-2018-21 e-Print: arXiv:1809.01830 [hep-ph] | PDF

Abstract (arXiv)

The future 100-km circular collider FCC at CERN is planned to operate in one of its modes as an electron-positron FCC-ee machine. We give an overview of the theoretical status compared to the experimental demands of one of four foreseen FCC-ee operating stages, which is Z-boson resonance energy physics. FCC-ee Tera-Z stage for short. The FCC-ee Tera-Z will deliver the highest integrated luminosities as well as very small systematic errors for a study the Standard Model (SM) with unprecedented precision. In fact, the FCC-ee Tera-Z will allow to study at least one more guantum field theoretical perturbative order compared to the LEP/SLC precision. The real problem is that the present precision of theoretical calculations of the various observables within the SM does not match that of the anticipated experimental measurements. The bottle-neck problems are specified. In particular, the issues of precise QED unfolding and of the correct calculation of SM pseudo-observables are critically reviewed. In an Executive Summary we specify which basic theoretical calculations are needed to meet the strong experimental expectations at the FCC-ee Tera-Z. Several methods, techniques and tools needed for higher order multi-loop calculations are presented. By inspection of the Z-boson partial and total decay widths analysis, arguments are given that at the beginning of operation of the FCC-ee Tera-Z, the theory predictions may be tuned to be precise enough not to limit the physics interpretation of the measurements. This statement is based on the anticipated progress in analytical and numerical calculations of multi-loop and multi-scale Feynman integrals and on the completion of two-loop electroweak radiative corrections to the SM pseudo-observables this year. However, the above statement is conditional as the theoretical issues demand a very dedicated and focused investment by the community.

50 year of Z-boson physics

#

Reserve University

SM@50

The Standard Model at 50 Years: a celebratory symposium will take place in the

Physics Department Case Western

Speakers

Steven Adler James "BJ" Bjorken Alain Blondel John Butterworth Norman Christ Savas Dimopoulos Henriette Elvang Pavel Fileviez Perez Alexei Filippenko Jerome Friedman Mary K. Gaillard David Gross Gerard 't Hooft Takaaki Kajita Rocky Kolb Bryan W. Lynn Michael Peskin Hellen Quinn Carlo Rubbia Jurgen Schukraft George Smoot Glenn Starkman Samuel Ting Bennie F.L. Ward Steven Weinberg Mark Wise Sau Lan Wu

50 years of the Z-boson theory (1967)

VOLUME 19, NUMBER 21

PHYSICAL

PHYSICAL REVIEW LETTERS

20 NOVEMBER 1967

S. Weinberg

"A MODEL OF LEPTONS"

$$\begin{split} \varphi_1 &\equiv (\varphi^0 + \varphi^{0\dagger} - 2\lambda)/\sqrt{2} \quad \varphi_2 &\equiv (\varphi^0 - \varphi^{0\dagger})/i\sqrt{2} \,. \end{split} {(5)} \\ \text{The condition that } \varphi_1 \text{ have zero vacuum expec-} \end{split}$$

tation value to all orders of perturbation theory tells us that $\lambda^{2} \le M_{1}^{2}/2k$, and therefore the field φ_{1} has mass M_{1} while φ_{2} and φ^{-} have mass zero. But we can easily see that the Goldstone bosons represented by φ_{2} and φ^{-} have no physical coupling. The Lagrangian is gauge invariant, so we can perform a combined isospin and hypercharge gauge transformation which eliminates φ^{-} and φ_{2} everywhere⁶ without changing anything else. We will see that C_{ϕ} is very small, and in any case M_{1} might be very large,⁷ so the φ_{1} couplings will also be disregarded in the following.

The effect of all this is just to replace φ everywhere by its vacuum expectation value

$$=\lambda \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
. (6)

The first four terms in $\ensuremath{\mathfrak{L}}$ remain intact, while the rest of the Lagrangian becomes

$$-\frac{1}{9}\lambda^2 g^2 [(A_{\mu}^{-1})^2 + (A_{\mu}^{-2})^2] \\ -\frac{1}{9}\lambda^2 (gA_{\mu}^{-3} + g'B_{\mu})^2 - \lambda G_e \overline{e}e.$$
(7)

We see immediately that the electron mass is λG_{e} . The charged spin-1 field is

$$W_{\mu} \equiv 2^{-1/2} (A_{\mu}^{1} + i A_{\mu}^{2}) \qquad (8$$

and has mass

 $M_{W} = \frac{1}{2} \lambda g$. (9)

The neutral spin-1 fields of definite mass are

$$Z_{\mu} = (g^{2} + g'^{2})^{-1/2} (gA_{\mu}^{3} + g'B_{\mu}), \qquad (10)$$

$$A_{\mu} = (g^2 + g'^2)^{-1/2} (-g'A_{\mu}^3 + gB_{\mu}). \tag{11}$$

Their masses are

$$M_{Z} = \frac{1}{2} \lambda (g^{2} + g'^{2})^{1/2}, \qquad (12)$$

 $M_{A} = 0,$

(13)

so A_{μ} is to be identified as the photon field. The interaction between leptons and spin-1 mesons is

$$\frac{\frac{18}{2\sqrt{2}}}{2\sqrt{2}}\overline{e}\gamma^{\mu}(1+\gamma_{5})^{\nu}W_{\mu}^{\mu} + \text{H.c.} + \frac{\frac{182}{(g^{2}+g^{\prime \prime})^{1/2}}\overline{e}\gamma^{\mu}eA_{\mu} \\ + \frac{i(g^{2}+g^{\prime \prime})^{1/2}}{4}\Big[\Big(\frac{3}{g^{\prime \prime 2}+g^{\prime 2}}\Big)\overline{e}\gamma^{\mu}e-\overline{e}\gamma^{\mu}\gamma_{5}e+\overline{\nu}\gamma^{\mu}(1+\gamma_{5})^{\mu}\Big]Z_{\mu}.$$
(14)

50 years of the SM

And, exactly 45 years of the Z-boson discovery (1973)

Gargamelle

Rich physics

Presently:

Very good agreement

theory — experiment

over large number of EWPOs

Table 10.5: Principal Z pole observables and their SM predictions (cf. Table 10.4). The first π_{ℓ}^{2} is the effective weak mixing angle extracted from the hadronic charge asymmetry, the second is the combined value from the Tevatron [164–166], and the third from the LHC [170–172]. The values of A_{ℓ} are (i) from $A_{\ell R}$ for hadronic final states [159]; (ii) from $A_{\ell R}$ for leptonic final states and from polarized Bhabba scattering [161]; and (iii) from the angular distribution of the τ polarization at LEP 1. The A_{τ} values are from SLD and the total τ polarization, respectively.

Erler, Freitas, PDG'17

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Quantity	Value	Standard Model	Pull
$\begin{array}{c c} & \Gamma_{E}^{\sigma}\left[{\rm GeV}\right]^{\dagger} & 2.4952 \pm 0.0023 & 2.4943 \pm 0.0008 & 0.4 \\ \Gamma\left({\rm Ind}\right) \left[{\rm GeV}\right] & 1.7444 \pm 0.0023 & 1.7420 \pm 0.0008 & \\ \Gamma\left({\rm GeV}\right) & 1.7444 \pm 0.0023 & 1.7420 \pm 0.0008 & \\ \Gamma\left({\rm GeV}\right) & 1.7444 \pm 0.0008 & \\ \Gamma\left({\rm GeV}\right) & 83.984 \pm 0.086 & 83.995 \pm 0.010 & \\ \sigma_{\rm and}\left[{\rm nb}\right] & 41.541 \pm 0.037 & 41.484 \pm 0.008 & 1.5 \\ R_e & 20.804 \pm 0.053 & 20.734 \pm 0.010 & 1.4 \\ R_{\mu} & 20.785 \pm 0.033 & 20.734 \pm 0.010 & 1.6 \\ R_r & 20.785 \pm 0.033 & 20.779 \pm 0.010 & -0.3 \\ R_b & 0.21629 \pm 0.0006 & 0.21579 \pm 0.0003 & 0.0 \\ R_e & 0.1721 \pm 0.00030 & 0.017221 \pm 0.00003 & 0.0 \\ A_{PB}^{0.0} & 0.0169 \pm 0.0013 & 0.5 \\ A_{PB}^{0.0} & 0.0092 \pm 0.0016 & 0.1031 \pm 0.0003 & -2.4 \\ A_{PB}^{0.00} & 0.0077 \pm 0.0035 & 0.0733 \pm 0.0002 & -0.8 \\ A_{PB}^{0.00} & 0.0797 \pm 0.0035 & 0.0733 \pm 0.0002 & -0.8 \\ A_{PB}^{0.00} & 0.0797 \pm 0.0035 & 0.0733 \pm 0.0002 & -0.8 \\ A_{PB}^{0.00} & 0.0797 \pm 0.0035 & 0.0733 \pm 0.0002 & -0.8 \\ A_{PB}^{0.00} & 0.0797 \pm 0.0035 & 0.0733 \pm 0.0002 & -0.8 \\ A_{PB}^{0.00} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.0003 & -0.5 \\ A_e & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ 0.1498 \pm 0.0035 & 0.99 \\ A_e & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ 0.1498 \pm 0.0049 & 0.6 \\ A_{\mu} & 0.142 \pm 0.015 & -0.3 \\ A_{\tau} & 0.133 \pm 0.0021 & -0.7 \\ A_{t} & 0.0133 \pm 0.0021 & 0.03347 & -0.7 \\ A_{t} & 0.0133 \pm 0.0043 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t} & 0.079 \pm 0.001 & 0.03347 & -0.7 \\ A_{t}$		M _Z [GeV]	91.1876 ± 0.0021	91.1880 ± 0.0020	-0.2
$\begin{array}{c c} \Gamma^{(\rm had)}_{\rm (had)} \left[\dot{\rm GeV} \right] & 1.7444 \pm 0.0020 & 1.7420 \pm 0.0008 &\\ \Gamma^{(\rm inv)}_{\rm (heV)} \left 409.0 \pm 1.5 & 501.66 \pm 0.05 &\\ \Gamma^{(\rm inv)}_{\rm (ref} \left[NeV \right] & 490.0 \pm 1.5 & 501.66 \pm 0.05 &\\ \sigma_{\rm mat} \left[{\rm nb} \right] & 41.541 \pm 0.037 & 41.484 \pm 0.008 & 1.5 & \\ R_e & 20.804 \pm 0.050 & 20.734 \pm 0.010 & 1.6 & \\ R_T & 20.764 \pm 0.045 & 20.779 \pm 0.010 & -0.3 & \\ R_b & 0.21629 \pm 0.0006 & 0.21579 \pm 0.00003 & 0.8 & \\ R_e & 0.1721 \pm 0.0006 & 0.21579 \pm 0.00003 & 0.0 & \\ A_{FB}^{(0a)} & 0.0169 \pm 0.0013 & 0.1622 \pm 0.00009 & -\mu.7 & \\ A_{FB}^{(0a)} & 0.0199 \pm 0.0016 & 0.1031 \pm 0.0003 & -2.4 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0035 & -0.7 & \\ 0.1348 \pm 0.00035 & -0.4 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0033 & -0.7 & \\ 0.1438 \pm 0.0015 & -0.3 & \\ A_{FB}^{(0a)} & 0.0336 & -0.7 & \\ 0.1439 \pm 0.0043 & -0.7 & \\ 0.1439 \pm 0.0043 & -0.7 & \\ 0.1439 \pm 0.0043 & -0.7 & \\ 0.0356 & -0.4 & \\ A_{FB}^{(0a)} & 0.0707 \pm 0.0678 \pm 0.0002 & 0.03347 & -0.6 & \\ A_{FB}$		Γ_Z [GeV]	2.4952 ± 0.0023	2.4943 ± 0.0008	0.4
$\begin{array}{c c} \Gamma_{(mv)}^{(mv)} [\mathrm{MeV}] & 490.9\pm 1.5 & 501.66\pm 0.05 &\\ \Gamma_{(\ell^+\ell^-)}^{(\ell^+\ell^-)} [\mathrm{MeV}] & 83.984\pm 0.086 & 83.995\pm 0.010 &\\ \sigma_{\mathrm{bal}}(\mathrm{lbb}) & 83.984\pm 0.086 & 83.995\pm 0.010 & 1-\\ R_e & 20.804\pm 0.057 & 41.484\pm 0.008 & 1.5\\ R_e & 20.804\pm 0.037 & 41.484\pm 0.008 & 1.5\\ R_T & 20.75\pm 0.031 & 20.73\pm 0.010 & 1.6\\ R_T & 20.76\pm 0.030 & 0.172\pm 0.00003 & 0.0\\ R_e & 0.172\pm 0.00066 & 0.21579\pm 0.0003 & 0.0\\ R_e & 0.172\pm 0.00030 & 0.0122\pm 0.00003 & 0.0\\ R_{BB}^{(0,e)} & 0.0145\pm 0.0025 & 0.01622\pm 0.00003 & 0.0\\ A_{BB}^{(0,e)} & 0.0188\pm 0.0017 & 1.5\\ A_{BB}^{(0,e)} & 0.0188\pm 0.0017 & 1.5\\ A_{BB}^{(0,e)} & 0.007\pm 0.0035 & 0.0736\pm 0.0002 & -0.8\\ A_{BB}^{(0,e)} & 0.097\pm 0.0016 & 0.23152\pm 0.00003 & -0.5\\ s_{\ell}^{(0,e)} & 0.0976\pm 0.0114 & 0.1032\pm 0.0003 & -0.5\\ a_{\ell}^{(0,e)} & 0.23185\pm 0.00055 & 0.9\\ 0.23105\pm 0.00057 & -0.5\\ A_e & 0.15138\pm 0.00216 & 0.1470\pm 0.0004 & 2.0\\ 0.1434\pm 0.0060 & 1.2\\ 0.1439\pm 0.015 & -0.7\\ 0.1439\pm 0.015 & -0.7\\ A_{\ell} & 0.1432\pm 0.020 & 0.9347 & -0.5\\ A_e & 0.070\pm 0.021 & 0.03347 & -0.7\\ A_{k} & 0.092\pm 0.020 & 0.9347 & -0.5\\ A_e & 0.070\pm 0.021 & 0.021 & -0.0345 & -0.0004\\ A_{k} & 0.055\pm 0.001 & 0.9356 & -0.4\\ A_{k} & 0.855\pm 0.001 & 0.9356 $		Γ(had) [GeV]	1.7444 ± 0.0020	1.7420 ± 0.0008	
$\begin{array}{c c} \Gamma(\ell^+\ell^-) & [MeV] & 83.984 \pm 0.086 & 83.905 \pm 0.010 &\\ \sigma_{had}[nb] & 41.541 \pm 0.037 & 41.848 \pm 0.008 & 1.5 \\ R_e & 20.804 \pm 0.060 & 20.734 \pm 0.010 & 1.4 \\ POS & R_\mu & 20.785 \pm 0.033 & 20.734 \pm 0.010 & 1.6 \\ R_\tau & 20.785 \pm 0.032 & 20.734 \pm 0.010 & -0.3 \\ R_b & 0.21029 \pm 0.00066 & 0.21579 \pm 0.0003 & 0.8 \\ R_e & 0.1721 \pm 0.0030 & 0.17221 \pm 0.00003 & 0.0 \\ A_{PB}^{(0,e)} & 0.0145 \pm 0.0025 & 0.01622 \pm 0.00009 & -P.7 \\ A_{PB}^{(0,a)} & 0.0169 \pm 0.013 & 0.5 \\ A_{PB}^{(0,a)} & 0.0199 \pm 0.0016 & 0.1031 \pm 0.0003 & -2.4 \\ A_{PB}^{(0,a)} & 0.0992 \pm 0.0016 & 0.1031 \pm 0.0003 & -0.5 \\ A_{PB}^{(0,a)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.00005 & -0.7 \\ 0.23105 \pm 0.0005 & 0.0738 \pm 0.0002 & -0.8 \\ A_{PB}^{(0,a)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.0003 & -0.5 \\ A_e & 0.15138 \pm 0.0035 & 0.9 \\ 0.23105 \pm 0.00087 & -0.5 \\ A_e & 0.15138 \pm 0.0021 & 0.1470 \pm 0.004 & 2.0 \\ 0.1848 \pm 0.0049 & 0.6 \\ A_\mu & 0.1428 \pm 0.003 & 0.77 \\ 0.1339 \pm 0.003 & -0.7 \\ A_{e} & 0.0134 \pm 0.004 & 0.6 \\ A_{\mu} & 0.1428 \pm 0.004 & 0.6 \\ A_{\mu} & 0.1428 \pm 0.004 & 0.7 \\ A_{e} & 0.070 \pm 0.013 & -0.7 \\ A_{e} & 0.0136 \pm 0.0043 & -0.7 \\ A_{e} & 0.0136 \pm 0.0043 & -0.7 \\ A_{e} & 0.0136 \pm 0.004 & 0.6 \\ A_{\mu} & 0.1428 \pm 0.004 & 0.6 \\ A_{\mu} & 0.0148 \pm 0.004 & 0.6 \\ A_{\mu} & 0.0148 \pm 0.004 & 0.6 \\ A_{\mu} & 0.0148 \pm 0.004 & 0.6 \\ A_{\mu} & 0.0138 \pm 0.004 & 0.6 \\ A_{\mu} & 0.0138 \pm 0.004 & 0.05 \\ A_{e} & 0.070 \pm 0.003 & 0.0736 \pm 0.0002 & 0.05 \\ A_{e} & 0.070 \pm 0.003 & 0.0736 \pm 0.0004 & 0.7 \\ A_{e} & 0.070 \pm 0.004 & 0.004 & 0.6 \\ A_{\mu} & 0.0148 \pm 0.004 & 0.6 \\ A_{\mu} & 0.0148 \pm 0.004 & 0.05 \\ A_{\mu} & 0.0148 \pm 0.004 & 0.05 \\ A_{\mu} & 0.0326 \pm 0.020 & 0.9347 & -0.6 \\ A_{e} & 0.070 \pm 0.021 & 0.0935 & -0.04 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.14 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.14 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.9356 & -0.4 \\ A_{e} & 0.070 \pm 0.001 & 0.$		Γ(inv) [MeV]	499.0 ± 1.5	501.66 ± 0.05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.995 ± 0.010	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\sigma_{\rm had}[\rm nb]$	41.541 ± 0.037	41.484 ± 0.008	1.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Re	20.804 ± 0.050	20.734 ± 0.010	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R_{μ}	20.785 ± 0.033	20.734 ± 0.010	1.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PUS	$\dot{R_{\tau}}$	20.764 ± 0.045	20.779 ± 0.010	-0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R_b	0.21629 ± 0.00066	0.21579 ± 0.00003	0.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Rc	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$ \begin{array}{ccccc} A_{FB}^{[0,a)} & 0.0169 \pm 0.0013 & 0.5 \\ A_{FB}^{[0,a)} & 0.0188 \pm 0.0017 & 1.5 \\ A_{FB}^{[0,a)} & 0.0982 \pm 0.0016 & 0.1031 \pm 0.0003 & -2.4 \\ A_{FB}^{[0,a)} & 0.0992 \pm 0.0016 & 0.1031 \pm 0.0002 & -0.8 \\ A_{FB}^{[0,a)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.0003 & -0.5 \\ a_{FB}^{[0,a)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.0003 & -0.5 \\ a_{FB}^{[0,a)} & 0.23185 \pm 0.00035 & 0.9 \\ 0.23105 \pm 0.00087 & -0.5 \\ A_{e} & 0.15138 \pm 0.00026 & 0.1470 \pm 0.0004 & 2.0 \\ 0.1544 \pm 0.0060 & 1.2 \\ 0.1648 \pm 0.0063 & -0.7 \\ 0.1349 \pm 0.015 & -0.3 \\ A_{\tau} & 0.136 \pm 0.015 & -0.7 \\ 0.1349 \pm 0.0015 & -0.7 \\ 0.1349 \pm 0.003 & -0.7 \\ A_{b} & 0.923 \pm 0.020 & 0.9347 & -0.6 \\ A_{c} & 0.677 \pm 0.027 & 0.6678 \pm 0.0002 & -0.1 \\ A_{s} & 0.895 \pm 0.091 & 0.9356 & -0.4 \\ \end{array} $		$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01622 ± 0.00009	-D.7
$ \begin{array}{ccccc} A_{FB}^{[0,7)} & 0.0188 \pm 0.0017 & 1.5 \\ A_{FB}^{[0,6)} & 0.0992 \pm 0.0016 & 0.1031 \pm 0.0003 & -2.4 \\ A_{I0,0}^{[0,6)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 \\ A_{I0,0}^{[0,6)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0003 & -0.5 \\ s_{\ell}^{[2]} & 0.2324 \pm 0.0012 & 0.23152 \pm 0.00005 & 0.7 \\ & 0.23185 \pm 0.00035 & 0.9 \\ & 0.23105 \pm 0.00087 & -0.5 \\ A_{e} & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ & 0.1498 \pm 0.0049 & 0.6 \\ A_{\mu} & 0.142 \pm 0.015 & -0.3 \\ A_{\tau} & 0.136 \pm 0.003 & -0.7 \\ & 0.136 \pm 0.003 & -0.7 \\ & 0.1439 \pm 0.0043 & -0.7 \\ A_{b} & 0.923 \pm 0.020 & 0.9347 & -0.6 \\ A_{c} & 0.6770 \pm 0.027 & 0.6678 \pm 0.0092 & -0.14 \\ A_{s} & 0.895 \pm 0.001 & 0.9356 & -0.4 \\ \end{array} $		$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.5
$ \begin{array}{cccccc} A_{FB}^{(0,0)} & 0.0992 \pm 0.0016 & 0.1031 \pm 0.0003 & -2.4 \\ A_{FB}^{(0,c)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 \\ A_{FB}^{(0,c)} & 0.0707 \pm 0.0015 & 0.0736 \pm 0.0002 & -0.8 \\ A_{FB}^{(0,c)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.00035 & -0.5 \\ 0.23185 \pm 0.00035 & 0.9 \\ 0.23105 \pm 0.00037 & -0.5 \\ A_{e} & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ 0.1498 \pm 0.0049 & 0.6 \\ A_{\mu} & 0.142 \pm 0.015 & -0.3 \\ A_{7} & 0.136 \pm 0.0033 & -0.7 \\ 0.1338 \pm 0.003 & -0.7 \\ 0.1439 \pm 0.0043 & -0.7 \\ A_{b} & 0.0224 & 0.020 & 0.9347 & -0.6 \\ A_{e} & 0.6770 \pm 0.027 & 0.6678 \pm 0.0002 & -0.11 \\ A_{s} & 0.895 \pm 0.001 & 0.9356 & -0.4 \\ \end{array} $		$A_{FB}^{(0,\tau)}$	0.0188 ± 0.0017		1.5
$ \begin{array}{cccc} A_{FB}^{(0,c)} & 0.0707 \pm 0.0035 & 0.0736 \pm 0.0002 & -0.8 \\ A_{FB}^{(0,a)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.0003 & -0.5 \\ A_{FB}^{(0,a)} & 0.2324 \pm 0.0012 & 0.23152 \pm 0.00005 & 0.7 \\ 0.23185 \pm 0.00035 & 0.9 \\ 0.23185 \pm 0.00035 & 0.9 \\ 0.23105 \pm 0.00037 & -0.5 \\ A_e & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ 0.1544 \pm 0.0060 & 1.2 \\ 0.1644 \pm 0.0060 & 1.2 \\ 0.1648 \pm 0.015 & -0.3 \\ A_{\tau} & 0.133 \pm 0.015 & -0.7 \\ 0.1439 \pm 0.004 & 0.0336 & -0.7 \\ A_b & 0.0224 \pm 0.020 & 0.9347 & -0.6 \\ A_e & 0.6770 \pm 0.027 & 0.6678 \pm 0.0002 & -0.1 \\ A_s & 0.895 \pm 0.001 & 0.9356 & -0.4 \\ \end{array} $		$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1031 ± 0.0003	-2.4
$ \begin{array}{ccccc} A_{FB}^{(0,a)} & 0.0976 \pm 0.0114 & 0.1032 \pm 0.0003 & -0.5 \\ s_{\ell}^{2} & 0.2324 \pm 0.0012 & 0.23152 \pm 0.00005 & 0.7 \\ & 0.23155 \pm 0.00035 & 0.9 \\ & 0.23155 \pm 0.00037 & -0.5 \\ & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 1.2 \\ & 0.1644 \pm 0.0060 & 1.2 \\ & 0.1498 \pm 0.0049 & 0.6 \\ A_{\mu} & 0.142 \pm 0.015 & -0.3 \\ A_{\tau} & 0.133 \pm 0.015 & -0.7 \\ & 0.1439 \pm 0.013 & -0.7 \\ & 0.1439 \pm 0.024 & 0.0347 & -0.6 \\ A_{e} & 0.070 \pm 0.027 & 0.6678 \pm 0.0002 & 0.1 \\ A_{e} & 0.870 \pm 0.021 & 0.03367 & -0.1 \\ \end{array} $		$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0736 ± 0.0002	-0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1032 ± 0.0003	-0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\bar{s}_{ℓ}^2	0.2324 ± 0.0012	0.23152 ± 0.00005	0.7
$\begin{array}{cccc} 0.23105\pm 0.00087 & -0.5\\ A_{x} & 0.15138\pm 0.00216 & 0.1470\pm 0.0004 & 2.0\\ & 0.1544\pm 0.0060 & 1.2\\ & 0.1498\pm 0.0049 & 0.6\\ A_{\mu} & 0.142\pm 0.015 & -0.3\\ A_{\tau} & 0.136\pm 0.015 & -0.7\\ & 0.1439\pm 0.0043 & -0.7\\ A_{b} & 0.922\pm 0.020 & 0.9347 & -0.6\\ A_{c} & 0.677\pm 0.027 & 0.6678\pm 0.0002 & 0.1\\ A_{s} & 0.895\pm 0.001 & 0.9356 & -0.4\\ \end{array}$			0.23185 ± 0.00035		0.9
$ \begin{array}{cccc} A_{e} & 0.15138 \pm 0.00216 & 0.1470 \pm 0.0004 & 2.0 \\ & 0.1544 \pm 0.0060 & 1.2 \\ & 0.1498 \pm 0.0040 & 0.6 \\ A_{\mu} & 0.142 \pm 0.015 & -0.3 \\ A_{\tau} & 0.136 \pm 0.015 & -0.7 \\ & 0.1439 \pm 0.0043 & -0.7 \\ A_{b} & 0.923 \pm 0.020 & 0.9347 & -0.6 \\ A_{c} & 0.670 \pm 0.027 & 0.6678 \pm 0.0002 & 0.1 \\ A_{s} & 0.895 \pm 0.001 & 0.9356 & -0.4 \\ \end{array} $			0.23105 ± 0.00087		-0.5
$\begin{array}{ccccc} 0.1544\pm 0.0060 & 1.2\\ 0.1498\pm 0.0049 & 0.6\\ A_{\mu} & 0.142\pm 0.015 & -0.3\\ A_{\tau} & 0.136\pm 0.015 & -0.7\\ 0.1439\pm 0.0043 & -0.7\\ A_{b} & 0.023\pm 0.020 & 0.9347 & -0.6\\ A_{c} & 0.670\pm 0.027 & 0.6678\pm 0.0002 & 0.1\\ A_{s} & 0.895\pm 0.001 & 0.9356 & -0.4\\ \end{array}$		A_e	0.15138 ± 0.00216	0.1470 ± 0.0004	2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.1544 ± 0.0060		1.2
$\begin{array}{ccccc} A_{\mu} & 0.142\pm 0.015 & -0.3 \\ A_{\tau} & 0.136\pm 0.015 & -0.7 \\ & 0.1439\pm 0.0043 & -0.7 \\ A_b & 0.923\pm 0.020 & 0.9347 & -0.6 \\ A_c & 0.670\pm 0.027 & 0.6678\pm 0.001 & 0.9356 \\ A_s & 0.895\pm 0.001 & 0.9356 & -0.4 \\ \end{array}$			0.1498 ± 0.0049		0.6
$\begin{array}{cccccc} A_{7} & 0.136\pm0.015 & -0.7 \\ & 0.1439\pm0.0043 & -0.7 \\ A_{b} & 0.922\pm0.020 & 0.9347 & -0.6 \\ A_{c} & 0.670\pm0.027 & 0.6678\pm0.0002 & 0.1 \\ A_{s} & 0.895\pm0.001 & 0.9356 & -0.4 \\ \end{array}$		A_{μ}	0.142 ± 0.015		-0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A _T	0.136 ± 0.015		-0.7
$\begin{array}{ccccc} A_b & 0.923 \pm 0.020 & 0.0347 & -0.6 \\ A_c & 0.670 \pm 0.027 & 0.6678 \pm 0.0002 & 0.1 \\ A_s & 0.895 \pm 0.091 & 0.9356 & -0.4 \end{array}$			0.1439 ± 0.0043		-0.7
A_c 0.670 \pm 0.027 0.6678 \pm 0.0002 0.1 A_s 0.895 \pm 0.091 0.9356 -0.4		A_b	0.923 ± 0.020	0.9347	-0.6
$A_8 = 0.895 \pm 0.091 = 0.9356 - 0.4$		Ac	0.670 ± 0.027	0.6678 ± 0.0002	0.1
		A_8	0.895 ± 0.091	0.9356	-0.4

50 years of the SM

Rough scheme for extracting the Zff vertex and EW corrections (1)

50 years of the SM

Rough scheme for extracting the $Z\bar{f}f$ vertex and EW corrections (2)

QED unfolding

Altogether $17\cdot 10^6$ Z-boson decays at LEP

Cross section : Z mass and width

EWPOs (electroweak pseudo-observables)

$$\sigma_{peak}^{real} \longrightarrow \begin{cases} \sigma_0 \equiv \sigma_{peak}^{eff.,Born} \\ M_Z, \Gamma_Z, \Gamma_{partial} \\ A_{FB,peak}^{eff.,Born}, A_{LR,peak}^{eff.,Born} \\ R_b, R_\ell \end{cases}$$

• Not got for free! Unfolding of QED — improvements needed for basic LEP programs: KKMC, ZFITTER,...

EWPOs & Form Factors

Note approximate factorization of weak couplings

$$A_{F-B} = \frac{\left[\int_0^1 d\cos\theta - \int_{-1}^0 d\cos\theta\right] \frac{d\sigma}{d\cos\theta}}{\sigma_T} \sim \underbrace{\frac{A_e}{2a_e v_e}}_{a_e^2 + v_b^2} \quad \underbrace{\frac{A_b}{2a_b v_b}}_{a_b^2 + v_b^2} + \text{corrections}$$

$$A_{\rm b} = \frac{2\Re e_{a_b}^{v_b}}{1 + \left(\Re e_{a_b}^{v_b}\right)^2} = \frac{1 - 4|Q_b|\sin^2\theta_{\rm eff}^{\rm b}}{1 - 4|Q_b|\sin^2\theta_{\rm eff}^{\rm b} + 8Q_b^2(\sin^2\theta_{\rm eff}^{\rm b})^2}, \quad \sin^2\theta_{\rm eff}^{\rm b} \longrightarrow F\left(\Re e_{a_b}^{v_b}\right)$$

$Past \rightarrow present \rightarrow future$

• LEP and SLC studies, the effects of EW quantum corrections became visible in global SM fits:

 m_t , m_H ;

- The improved precision a platform for deep tests of the quantum structure;
- Unprecendented sensitivity to heavy or super-weakly coupled new physics.

50 years of the SM

Future Linear e⁺e⁻ Colliders

PARTICLEFACE 2018

Future e+e- Colliders

14 / 74

50 years of the SM

LEP uncertainities, A. Freitas: 1604.00406

This

	Experiment	Theory error	Main source			
$M_{ m W}$	$80.385 \pm 0.015 ~{\rm MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_{\rm s}$			
$\Gamma_{ m Z}$	$2495.2\pm2.3~{\rm MeV}$	$0.5 \mathrm{MeV}$	$\star \alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}, \alpha \alpha_{\rm s}^2$			
$\sigma_{ m had}^0$	$41540\pm37~\rm{pb}$	6 pb	$_{\star} \alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}$			
$R_b \equiv \Gamma_{\rm Z}^b / \Gamma_{\rm Z}^{\rm had}$	0.21629 ± 0.00066	0.00015	$\int \alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}$			
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	4.5×10^{-5}	$^{\star}\alpha^{3}, \alpha^{2}\alpha_{\mathrm{s}}$			
talk: $lpha_{ m bos}^2$ results will be shown and discussed						

Earlier projections, A. Freitas: 1604.00406

	Me	asureme	nt error	Intrinsio	Intrinsic theory		
	ILC	CEPC	FCC-ee	Current	$Future^\dagger$		
$M_{ m W}$ [MeV]	3–4	3	1	4	1		
$\Gamma_{ m Z}$ [MeV]	0.8	0.5	0.1	0.5	0.2		
$R_b \ [10^{-5}]$	14	17	6	15	7		
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	1	2.3	0.6	4.5	1.5		

Table: Projected experimental and theoretical uncertainties for some electroweak precision pseudo-observables.

[†] Based on estimations for: $\mathcal{O}(\alpha_{bos}^2)$, $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^3)$

Γ_Z : 2.3 MeV $\rightarrow 0.1$ MeV

Table: Run plan for FCC-ee in its baseline configuration with two experiments. The WW event numbers are given for the entirety of the FCC-ee running at and above the WW threshold.

Phase	Run duration	Center-of-mass	Integrated	Event
	(years)	Energies	Luminosity	Statistics
		(GeV)	(ab^{-1})	
FCC-ee-Z	4	88-95	150	3.10^{12} visible Z decays
FCC-ee-W	2	158-162	12	$10^8~{ m WW}$ events
FCC-ee-H	3	240	5	$10^6~ZH$ events
FCC-ee-tt	5	345-365	1.5	$10^6 \; t ar{t}$ events

Table from arXiv:1809.01830

M. Mangano: "The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark", cited by Ian Shipsey in arXiv:1707.03711

Published results on EWPOs in the SM @NNLO

Complete corrections $\Delta r, \sin^2 \theta_{\text{eff}}^l$:

Fermionic corrections $\sin^2 \theta^b_{\text{eff}}, a_f, v_f$:

Freitas, Hollik, Walter, Weiglein: '00

- Awramik, Czakon: '02, Onishchenko, Veretin: '02
 - Awramik, Czakon, Freitas, Weiglein: '04
 - Awramik, Czakon, Freitas: '06
 - Hollik, Meier, Uccirati: '05,'07
 - Degrassi, Gambino, Giardino: '14
 - Awramik, Czakon, Freitas, Kniehl: '09
 - Czarnecki,Kühn: '96
 - Harlander, Seidensticker, Steinhauser: '98

Freitas: '13,'14

Dubovyk, Freitas, JG, Riemann, Usovitsch '16 Dubovyk, Freitas, JG, Riemann, Usovitsch '18

Bosonic corrections: $\sin^2 \theta_{\text{eff}}^{\text{b}}$: Bosonic corrections: Γ_Z, R_l, \dots :

Mellin-Barnes and Sector Decomposition methods are very much complementary

- MB works well for hard threshold, on-shell cases, not many internal masses (more IR); SD more useful for integrals with many internal masses
 - \longrightarrow talk by Johann Usovitsch, LL2018
 - \longrightarrow JG, Tord Riemann in PoS-LL2016 & DFGRU in PLB'16.

 10^{-8} accuracy achieved for any self-energy and vertex Feynman integral with one of the methods - in Minkowskian region.

21 / 74

New results for completing NNLO

Input parameters:

Parameter	Value	Parameter	Value
$M_{\rm Z}$	91.1876 GeV	$m_{ m b}^{\overline{ m MS}}$	4.20 GeV
Γ_{Z}	2.4952 GeV	$m_{ m c}^{\overline{ m MS}}$	1.275 GeV
$M_{ m W}$	80.385 GeV	$m_{ au}$	1.777 GeV
$\Gamma_{\rm W}$	2.085 GeV	$\Delta lpha$	0.05900
$M_{\rm H}$	125.1 GeV	$lpha_{ m s}(M_{ m Z})$	0.1184
$m_{ m t}$	173.2 GeV	G_{μ}	$1.16638 imes 10^{-5} \ \mathrm{GeV}^{-2}$

The 2-loops EWPOs results^{*} for $\mathcal{O}(\alpha_{\rm bos}^2)$, hep-ph/1804.10236

	Γ_i [MeV]	$\Gamma_e, \Gamma_\mu, \Gamma_\tau$	$\Gamma_{\nu_e}, \Gamma_{\nu_{\mu}}, \Gamma_{\nu_{\tau}}$	Γ_d, Γ_s	Γ_u, Γ_c	Γ_b	$\Gamma_{\rm Z}$
Born		81.142	160.096	371.141	292.445	369.56	2420.2
$\mathcal{O}(lpha)$		2.273	6.174	9.717	5.799	3.857	60.22
$\mathcal{O}(\alpha \alpha_{\mathrm{s}})$		0.288	0.458	1.276	1.156	2.006	9.11
$\mathcal{O}(N_f^2 lpha^2)$		0.244	0.416	0.698	0.528	0.694	5.13
$\mathcal{O}(N_f \alpha^2)$		0.120	0.185	0.493	0.494	0.144	3.04
$\mathcal{O}(lpha_{ m bos}^2)$		0.017	0.019	0.058	0.057	0.167	0.505
$\mathcal{O}(\alpha_{\rm t}\alpha_{\rm s}^2, \alpha_{\rm t}\alpha_{\rm s}^3,$	$\alpha_{\rm t}^2 \alpha_{\rm s}, \alpha_{\rm t}^3)$	0.038	0.059	0.191	0.170	0.190	1.20

- Fun fact of the day: so far all contributions positive.
- 2016, estimation, bosonic NNLO $\sim 0 \pm 0.1$ MeV 2018, exact result: 0.505 MeV
- * Fixed values of M_{W}

The 2-loops EWPOs results for $\mathcal{O}(\alpha_{\text{bos}}^2)$, hep-ph/1804.10236

	$\Gamma_{\rm Z}$ [GeV]	$\sigma_{ m had}^0$ [nb]
Born	2.53601	41.6171
$+ O(\alpha)$	2.49770	41.4687
$+ O(\alpha \alpha_{\rm s})$	2.49649	41.4758
$+ \mathcal{O}(lpha_{ m t} lpha_{ m s}^2, lpha_{ m t} lpha_{ m s}^3, lpha_{ m t}^2 lpha_{ m s}, lpha_{ m t}^3)$	2.49560	41.4770
$+ \mathcal{O}(N_f^2 \alpha^2, N_f \alpha^2)$	2.49441	41.4883
$+ O(lpha_{ m bos}^2)$	[+0.34 MeV]=2.49475	[+1.3 pb]=41.4896

Results for Γ_Z and σ_{had}^0 , with M_W calculated from G_μ using the same order of perturbation theory as indicated in each line.

The 2-loops EWPOs results for $\mathcal{O}(\alpha_{\text{bos}}^2)$, hep-ph/1804.10236

	R_ℓ	R_c	R_b
Born	21.0272	0.17306	0.21733
$+ O(\alpha)$	20.8031	0.17230	0.21558
$+ O(\alpha \alpha_{\rm s})$	20.7963	0.17222	0.21593
$+ \mathcal{O}(\alpha_{t}\alpha_{s}^{2}, \alpha_{t}\alpha_{s}^{3}, \alpha_{t}^{2}\alpha_{s}, \alpha_{t}^{3})$	20.7943	0.17222	0.21593
$+ \mathcal{O}(N_f^2 \alpha^2, N_f \alpha^2)$	20.7512	0.17223	0.21580
$+ O(\alpha_{ m bos}^2)$	20.7516	0.17222	0.21585

Results for the ratios R_{ℓ} , R_c and R_b , with M_W calculat ed from G_{μ} to the same order as indicated in each line.

Updates for error estimations

• Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods: Count prefactors (α , N_c , N_f , ...)
 - Extrapolation of perturbative series
 - Renormalization scale dependence
 - Renormalization scheme dependence

• Also parametric error from external inputs (m_t , m_b , α_s , $\Delta \alpha_{had}$, ...)

see, Ayres Freitas: 1604.00406

E.g.: Intrinsic theory error estimation for Γ_Z , 1804.10236 [1604.00406]

Geometric series

$$\begin{split} \delta_{1} : \ \mathcal{O}(\alpha^{3}) - \mathcal{O}(\alpha_{t}^{3}) &\sim \quad \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha^{2}) \sim 0.20 \text{ MeV} \ [0.26 \text{ MeV}] \\ \delta_{2} : \ \mathcal{O}(\alpha^{2}\alpha_{s}) - \mathcal{O}(\alpha_{t}^{2}\alpha_{s}) &\sim \quad \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.21 \text{ MeV} \ [0.3 \text{ MeV}] \\ \delta_{3} : \ \mathcal{O}(\alpha\alpha_{s}^{2}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{2}) &\sim \quad \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.23 \text{ MeV} \\ \delta_{4} : \ \mathcal{O}(\alpha\alpha_{s}^{3}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{3}) &\sim \quad \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}^{2}) \sim 0.035 \text{ MeV} \end{split}$$

 $\delta_5 : \mathcal{O}(\alpha_{bos}^2) \sim \mathcal{O}(\alpha_{bos})^2 \sim \mathbf{0.1} \text{ MeV } [\text{Now we know it!}]$

Total:
$$\delta\Gamma_Z = \sqrt{\sum\limits_{i=1}^5 \delta_i^2} \sim \mathbf{0.4}$$
 MeV [0.5 MeV]

Summary: estimations for higher order EW and QCD corrections

$\delta_1:$	δ_2 :	δ_3 :	δ_4 :	δ_5 :	$\delta\Gamma_Z$ [MeV]		
${\cal O}(lpha^3)$	$\mathcal{O}(lpha^2 lpha_{ m s})$	${\cal O}(lpha lpha_{ m s}^2)$	${\cal O}(lpha lpha_{ m s}^3)$	$\mathcal{O}(\alpha_{bos}^2)$	$=\sqrt{\sum_{i=1}^5 \delta_i^2}$		
TH1 (estimated e	error limits f	rom geome	etric series	of perturbation)		
0.26	0.3	0.23	0.035	0.1	0.5		
TH1-new (estimated error limits from geometric series of perturbation)							
0.2	0.21	0.23	0.035	$< 10^{-4}$	0.4		

δ_1' :	δ_2' :	δ_3' :	δ_4 :		$\delta\Gamma_Z$ [MeV]		
$\mathcal{O}(N_f^{\leq 1}\alpha^3)$	$\mathcal{O}(lpha^3 lpha_{ m s})$	$\mathcal{O}(lpha^2 lpha_{ m s}^2)$	${\cal O}(lpha lpha_{ m s}^3)$		$\sqrt{\delta_1'^2 + \delta_2'^2 + \delta_2'^3 + \delta_4^2}$		
TH2 (extrapolation through prefactor scaling)							
0.04	0.1	0.1	0.035	10^{-4}	0.15		

Crucial issue: accuracy of calculations

For 2-loops we maintained 4 digits for EWPOs.

A calculation of the radiative corrections $\delta_1 \div \delta_4$ and $\delta'_1 \div \delta'_3$ with a 10% accuracy (corresponding to two significant digits) should suffice to meet future experimental demands.

Minimal precision of 3-loop EW calculations:

- Calculating N^3LO with 10% accuracy (two digits), we can replace intrinsic error estimation $\delta\Gamma_Z = \sqrt{\sum_{i=1}^5 \delta_i^2} \sim 0.4$ MeV by $\delta\Gamma_Z = \sqrt{\sum_{i=1}^5 (\delta_i/10)^2} \sim 0.04$ MeV.
- The requirement of FCC-ee^{*exper. error*} $(\Gamma_Z) \sim 0.1$ MeV can be met and the condition

$$\delta$$
[FCCee^{theor.}(Γ_Z)] ~ 0.04 MeV < δ [FCCee^{exper.}(Γ_Z)] ~ 0.1 MeV

will be fullfilled.

Estimations for total values of missing EWPOs

	$\delta\Gamma_Z \; [\text{MeV}]$	$\delta R_l \ [10^{-4}]$	$\delta R_b \ [10^{-5}]$	$\sin^2\theta_{\rm eff}^{\rm l} \left[10^{-5}\right]$	$\sin^2\theta_{\rm eff}^{\rm b} \left[10^{-5}\right]$	$\sigma_{ m had}^0~[{ m pb}]$
EXP-FCCee	0.1	$2 \div 20$	$2 \div 6$	6	70	4
TH1*	0.4	60	10	4.5	5	6
TH2*	0.15	60	5	1.5	$1.5 \div 2$	6

- TH1 estimates from geometric series (3-loops)
- TH2 estimates from prefactor scaling (beyond 3-loops)
- * 10% knowledge (2 digits) of the error would decrease numbers by factor 10

And this should be the goal for future $\geq N^3 LO$ calculations

Conclusions on Z-lineshape and EWPOs for next years - theory

- NNLO EWPOs completed;
- Strong demand from FCC-ee to the theory on precision;
- Future \geq NNNLO calculations must be done with at least 10% accuracy, e.g. $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^3)$, $\mathcal{O}(N_f^{\leq 1} \alpha^3)$, $\mathcal{O}(\alpha^3 \alpha_s)$, $\mathcal{O}(\alpha^2 \alpha_s^2)$;
- We have tools for that;
- To be on the safe side, we would like to have at least 2 independent calculations;
- Still, a lot work is ahead, for success and efficiency, we need steady progress in numerical and also (semi)analytical approaches in multiloop calculations

BACKUP SLIDES

Discussion of NNNLO accuracy

Two factors play role:

- Number of diagrams
- Their complexity

Goal: at least 2-digits accuracy for EWPOs.

We estimate it to be possible, even from present perspective.

2-loops \longrightarrow 3-loops

$$m_1 = M_t, m_2 = M_W$$

The integrals contain up to three dimensionless parameters

$$\left\{\frac{M_{H}^{2}}{M_{Z}^{2}}, \frac{M_{W}^{2}}{M_{Z}^{2}}, \frac{m_{t}^{2}}{M_{Z}^{2}}, \frac{(M_{Z}+i\varepsilon)^{2}}{M_{Z}^{2}}\right\}$$

2-loops \longrightarrow 3-loops

• The standard model prediction for the effective weak mixing angle can be written as

$$\sin^2 \theta_{\rm eff}^{\rm b} = \left(1 - \frac{M_W^2}{M_Z^2}\right) \left(1 + \Delta \kappa_{\rm b}\right)$$

• The bosonic electroweak two-loop corrections amount to

$$\Delta \kappa_{\rm b}^{(\alpha^2,{\rm bos})} = -0.9855 \times 10^{-4}$$

DFGRU, Phys.Lett. B762 (2016) 184

Collection of radiative corrections: Full stabilization at 10^{-4} !

	Order	Value $[10^{-4}]$	Order	Value $[10^{-4}]$
	α	468.945	$\alpha_t^2 \alpha_s$	1.362
	$\alpha \alpha_s$	-42.655	α_t^3	0.123
	$\alpha_{\rm ferm}^2$	3.866	$\alpha_t \alpha_s^2$	-7.074
$\pm 0.001 -! \longrightarrow$	$\alpha_{\rm bos}^2$	-0.9855	$\alpha_t \alpha_s^3$	-1.196

Table: Comparison of different orders of radiative corrections to $\Delta \kappa_{\rm b}$. Input Parameters: M_Z , Γ_Z , M_W , Γ_W , M_H , m_t , α_s and $\Delta \alpha$

- one-loop contributions [Akhundov, Bardin, Riemann, 1986] [Beenakker, Hollik, 1988]
- two-loop fermionic contributions [Awramik, Czakon, Freitas, Kniehl, 2009]
- two-loop bosonic contributions [Dubovyk, Freitas, JG, Riemann, Usovitsch, 2016]

Partial higher-order corrections

```
\begin{array}{l} \mathcal{O}(\alpha_t \alpha_s^2) \\ \mathcal{O}(\alpha_t \alpha_s^3) \\ \mathcal{O}(\alpha^2 \alpha_t) \text{ and } \mathcal{O}(\alpha_t^3) \end{array}
```

Avdeev: 1994, Chetyrkin: 1995

Schroder: 2005, Chetyrkin: 2006, Boughezal: 2006 vanderBij: 2000, Faisst: 2003

3-loops. Basic bookkeeping

$Z ightarrow b ar{b}$			
Number of	1 loop	2 loops	3 loops
topologies	1	$14 \rightarrow^{(\mathbf{A})} 7 \rightarrow^{(\mathbf{B})} 5$	$211 \rightarrow^{(\mathbf{A})} 84 \rightarrow^{(\mathbf{B})} 50$
Number of diagrams	15	$2383 \rightarrow^{(\mathbf{A},\mathbf{B})} 1114$	$490387 \rightarrow^{(\mathbf{A},\mathbf{B})} 120187$
Fermionic loops	0	150	17580
Bosonic loops	15	<mark>964</mark>	102607
Planar diagrams	1T/15D	4T/981D	35T/84059D
Non-planar diagrams	0	1T/133D	15T/36128D

Table: Some statistical overview for $Z \rightarrow b\bar{b}$ multiloop studies. At 3 loops there are in total almost half a million of diagrams present. After basic refinements (A) and (B) about 10^5 genuine 3-loop vertex diagrams remain. In (A) tadpoles and products of lower loops are excluded, in (B) symmetries of topologies are taken into account.

A complete zoo of heavy particles m_t, m_W, m_Z, m_H @NNNLO level

MB: ϵ^{0} [8-dim], $1/\epsilon$ [7-dim]; SD: ϵ^{0} [8-dim], $1/\epsilon$ [7-dim];

At 2-loops up to three dimensionless parameters (all 4 at 3-loops):

$$\left\{\frac{M_{H}^{2}}{M_{Z}^{2}}, \frac{M_{W}^{2}}{M_{Z}^{2}}, \frac{m_{t}^{2}}{M_{Z}^{2}}, \frac{(M_{Z}+i\varepsilon)^{2}}{M_{Z}^{2}}\right\}$$

Sector decomposition

FIESTA 3 [A.V.Smirnov, 2014], SecDec 3 [Borowka, et. al., 2015] and pySecDec [Borowka, et. al., 2017]

Mellin-Barnes integral approach

- With AMBRE 2 [Gluza, et. al., 2011] (AMBRE 3 [Dubovyk, et. al., 2015]) we derive Mellin-Barnes representations for planar (non-planar) topologies. One may use PlanarityTest [Bielas, et. al, 2013] for automatic identification.
- Expansion in terms of $\epsilon = (4 D)/2$ is done with MB [Czakon, 2006], MBresolve [A. Smirnov, V. Smirnov, 2009], barnesroutines (D. Kosower).
- For the numerical treatment of massive Mellin-Barnes integrals with Minkowskian regions, the package MBnumerics is being developed since 2015.

References for EWPOs corrections I

$\mathcal{O}(\alpha)$ EW complete corrections:

 A. A. Akhundov, D. Y. Bardin and T. Riemann, Electroweak One Loop Corrections to the Decay of the Neutral Vector Boson, Nucl. Phys. B 276 (1986) 1. doi.org/10.1016/0550-3213(86)90014-3.

$\mathcal{O}(\alpha \alpha_s)$ QCD corrections:

- A. Djouadi, C. Verzegnassi, Virtual very heavy top effects in LEP/SLC precision measurements, Phys. Lett. B195 (1987) 265–271. doi:10.1016/0370-2693(87)91206-8.
- [2] A. Djouadi, $O(\alpha \alpha_s)$ vacuum polarization functions of the standard model gauge bosons, Nuovo Cim. A100 (1988) 357. doi:10.1007/BF02812964.
- B. A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nucl. Phys. B347 (1990) 86–104. doi:10.1016/0550-3213(90)90552-0.
- B. A. Kniehl, A. Sirlin, Dispersion relations for vacuum polarization functions in electroweak physics, Nucl. Phys. B371 (1992) 141–148. doi:10.1016/0550-3213(92)90232-Z.
- [5] A. Djouadi, P. Gambino, Electroweak gauge bosons selfenergies: Complete QCD corrections, Phys. Rev. D49 (1994) 3499–3511, Erratum: Phys. Rev. D53 (1996) 4111. arXiv:hep-ph/9309298, doi:10.1103/PhysRevD.49.3499, 10.1103/PhysRevD.53.4111.
- [6] J. Fleischer, O. Tarasov, F. Jegerlehner, P. Raczka, Two loop O(α_sG_μm²_t) corrections to the partial decay width of the Z⁰ into bb final states in the large top mass limit, Phys. Lett. B293 (1992) 437–444. doi:10.1016/0370-2693(92)90909-N.
- [7] G. Buchalla, A. Buras, QCD corrections to the s̄dZ vertex for arbitrary top quark mass, Nucl. Phys. B398 (1993) 285–300. doi:10.1016/0550-3213(93)90110-B.

References for EWPOs corrections II

- [8] G. Degrassi, Current algebra approach to heavy top effects in Z → b + b
 , Nucl. Phys. B407 (1993) 271–289. arXiv:hep-ph/9302288, doi:10.1016/0550-3213(93)90058-W.
- [9] K. Chetyrkin, A. Kwiatkowski, M. Steinhauser, Leading top mass corrections of order $O(\alpha \alpha_s m_t^2/M_W^2)$ to partial decay rate $\Gamma(Z \to b\bar{b})$, Mod. Phys. Lett. A8 (1993) 2785–2792. doi:10.1142/S0217732393003172.
- [10] A. Czarnecki, J. H. Kühn, Nonfactorizable QCD and electroweak corrections to the hadronic Z boson decay rate, Phys. Rev. Lett. 77 (1996) 3955–3958. arXiv:hep-ph/9608366, doi:10.1103/PhysRevLett.77.3955.
- [11] R. Harlander, T. Seidensticker, M. Steinhauser, Complete corrections of order O(αα_s) to the decay of the Z boson into bottom quarks, Phys. Lett. B426 (1998) 125–132. arXiv:hep-ph/9712228, doi:10.1016/S0370-2693(98)00220-2.

Partial higher order corrections of order $\mathcal{O}(\alpha_t \alpha_s^2)$:

- L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, O(αα²_s) correction to the electroweak ρ parameter, Phys. Lett. B336 (1994) 560–566, Erratum: Phys. Lett. B349 (1995) 597. arXiv:hep-ph/9406363, doi:10.1016/0370-2693(94)90573-8.
- [2] K. Chetyrkin, J. H. Kühn, M. Steinhauser, Corrections of order O(G_F M²_t α²_s) to the ρ parameter, Phys. Lett. B351 (1995) 331–338. arXiv:hep-ph/9502291, doi:10.1016/0370-2693(95)00380-4.
- Partial higher order corrections of order $\mathcal{O}(\alpha_t \alpha_s^3)$:
- Y. Schröder, M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B622 (2005) 124–130. arXiv:hep-ph/0504055, doi:10.1016/j.physletb.2005.06.085.
- [2] K. G. Chetyrkin, M. Faisst, J. H. Kühn, P. Maierhofer, C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003. arXiv:hep-ph/0605201, doi:10.1103/PhysRevLett.97.102003.

References for EWPOs corrections III

 [3] R. Boughezal, M. Czakon, Single scale tadpoles and O(G_Fm²_tα³_s) corrections to the ρ parameter, Nucl. Phys. B755 (2006) 221–238. arXiv:hep-ph/0606232.

Partial higher order corrections of orders $\mathcal{O}(\alpha_t^2 \alpha_s)$ and $\mathcal{O}(\alpha_t^3)$:

- J. J. van der Bij, K. G. Chetyrkin, M. Faisst, G. Jikia, T. Seidensticker, Three loop leading top mass contributions to the ρ parameter, Phys. Lett. B498 (2001) 156–162. arXiv:hep-ph/0011373, doi:10.1016/S0370-2693(01)00002-8.
- [2] M. Faisst, J. H. Kühn, T. Seidensticker, O. Veretin, Three loop top quark contributions to the ρ parameter, Nucl. Phys. B665 (2003) 649–662. arXiv:hep-ph/0302275, doi:10.1016/S0550-3213(03)00450-4.

EW SM theory at loops, an example ($\Delta_{ef} \neq 0$)

$$\left(\begin{array}{c} \Gamma_{Z}, \Gamma_{partial} \\ A_{FB,peak}^{eff.,Born}, A_{LR,peak}^{eff.,Born} \\ R_{b}, R_{\ell}, \dots \end{array}\right) \left\{\begin{array}{c} v_{\ell,\nu,u,d,b}^{eff} \\ a_{\ell,\nu,u,d,b}^{eff} \\ \sin^{2}\theta_{\mathrm{eff}}^{\mathrm{b}}, \sin^{2}\theta_{\mathrm{eff}}^{\mathrm{lept}} \end{array}\right.$$

e.g. : improvements needed for subtle corrections $\Delta_{1,2}$ (e.g. boxes, **2L-boxes**)

$$\begin{split} A_{FB,peak}^{eff.,Born} &= \frac{2\Re e\left[\frac{v_e a_e^*}{|a_e|^2}\right] 2\Re e\left[\frac{v_f a_f^*}{|a_f|^2}\right]}{\left(1 + \frac{|v_e|^2}{|a_e|^2}\right) \left(1 + \frac{|v_f|^2}{|a_f|^2}\right)} + \Delta_1 - \Delta_2 \simeq \frac{3}{4} A_e A_f, \\ \Delta_1 &= 2\Re e\left[\Delta_{ef}\right], \ \Delta_2 = |\Delta_{ef}|^2 + 2\Re e\left[\frac{v_e a_e^*}{|a_e|^2} \frac{v_f a_f^*}{|a_f|^2} \Delta_{ef}^*\right], \\ \Delta_{ef} &= 16|Q_e Q_f| s_W^4 (\kappa_{ef} - \kappa_e \kappa_f) \end{split}$$