Heptools in Katowice

Janusz Gluza

Heptools in Katowice

- Similarly as the Warsaw group, we are a subnode of IFJ-PAN Cracow
- Staff: M. Zrałek, K. Kołodziej, H. Czyż, J. Syska, J. G.
- Phd students:

Sz. Szczypiński (finished last year), B. Dziewit, A. Smolin-Joniec, K. Kajda, A. Wapienik, M. Gunia, M. Ochman, R. Szafron

• ESR: T. Sabonis (12 months)

We are working within the following milestones

- Multi-particle amplitudes
- study of four and six fermion production at e+ecolliders
- completion and automatization of arbitrary tree level processes computations
- Computer algebra (development of packages for Feynman integral calculations)
- precision calculations (Bhabha scattering)
- Alternative new physics (neutrinos)

Cooperation within EU network

- DESY-Zeuthen, Aachen (J.G.)
- Karlsruhe, Bologna (H.Czyż)
- U. Granada (M. Zrałek)
- Humboldt U. Berlin, DESY Zeuthen (K. Kołodziej)

Conferences

- Matter to the deepest: Recent developments in physics of fundamental interactions.
 31st International Conference of theoretical physics, Ustron, Poland, September 5-11, 2007
- This year again, http://www.us.edu.pl/~us2009
- Many participants from the Heptools network

carlomat, K. Kołodziej

- a program written in Fortran 90/95
- generates the matrix element for a user specified process
- generates phase space parametrizations, which are later used for the multichannel Monte Carlo integration of the lowest order cross sections and event generation
- takes into account both the electroweak and QCD lowest order contributions
- fermion masses are not neglected
- the maximum number of external particles is 12
- only the Standard Model is implemented at the moment

Top quark pair production in e^+e^- annihilation

Final state	\sqrt{s}	carlomat	AMAGIC++	HELAC
bbuūdd	360	32.98(11)	32.90(15)	33.05(14)
	500	50.31(19)	49.74(21)	50.20(13)
$b\bar{b}u\bar{d}e^-\bar{v}_e$	360	11.448(26)	11.460(36)	11.488(15)
	500	17.424(56)	17.486(66)	17.492(41)
$b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu$	360	3.843(5)	3.847(15)	3.848(7)
	500	5.856(11)	5.865(24)	5.868(10)
$b\bar{b}\mu^+ u_\mu\mu^-\bar{ u}_\mu$	360	3.837(5)	3.808(16)	3.861(19)
	500	5.834(10)	5.840(30)	5.839(12)

#'s in [fb]. Agreement for ~ 80 reactions. [Gleisberg, et al.]

$e^+e^- \rightarrow b\bar{b}b\bar{b}u\bar{d}\mu^-\bar{\nu}_{\mu}$ (relevant for $e^+e^- \rightarrow t\bar{t}H$)

\sqrt{s} [TeV]	$\sigma^{ m Whiz.}_{ m all}$ [ab]	σ _{all} [ab]	σ _{no QCD} [ab]	σ _{signal} [ab]	σ ^{no cuts} signal	$\sigma_{ m NWA}^{ m no\ cuts}$ [ab]
0.5	26.6(1)	26.8(4)	7.80(3)	3.095(3)	3.796(3)	3.920(1)
0.8	98.6(3)	100.2(8)	66.8(1)	46.27(2)	58.36(2)	60.03(2)
1	93.3(2)	93.1(3)	61.4(1)	40.18(2)	51.74(2)	52.42(3)
2	46.7(2)	47.4(2)	28.5(1)	15.14(3)	22.14(4)	20.68(3)

5° < $\theta(q, \text{beam}), \ \theta(l, \text{beam}) < 175^{\circ}, \ \theta(q, q'), \ \theta(l, q) > 10^{\circ},$ $E_q, \ E_l, \not E^T > 15 \text{ GeV}$

Large QCD and off resonance background!

Outlook, K. Kołodziej

- carlomat can be used for automatic computation of cross sections of multiparticle reactions and as an MC generator of unweighted events, too.
- Interfaces to PDF's, or ISR within the structure function approach are practically ready.
- Interfaces to parton shower and hadronization programs should be worked on.
- Extensions of SM can be implemented and the corresponding lowest order cross sections can be calculated in a fully automatic way.
- Leading SM radiative corrections can be implemented, if corresponding subroutines are provided.

Developing numerical tools for two-loop calculations

BOKASUN: A Fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams.

M. Caffo, R. Remiddi, INFN and Univ. of Bologna H. Czyż, M. Gunia, Univ. of Silesia, Katowice

arXiv:0807.1959, to be published in Comp. Phys. Comm.

Neutrinos properties beyond the Standard Model,

possibility of experimental verification.

- M. Zrałek, F.del Aguila, R.Szafron, M. Ochman, J. Syska
- *"Impact of right-handed interactions on the propagation of Dirac and Majorana neutrinos in matter", Phys.Rev.D76:013007,2007*
- *"Neutrino production states in oscillation phenomena. Are they pure or mix?", J.Phys.G35:065003,2008*
- "Neutrino oscillations beyond the Standard Model", Ser. 136:042027, 2008 J.Phys.Conf.Ser. 136:042027, 2008

The main obtained results:

Beyond the SM:

- 1.Neutrino production states are not pure QM states density matrix,
- 2. Final detection rates do not factorize,
- 3.It is possible to distinguish Dirac from Majorana neutrinos,
- 4.Coherent and incoherent oscillations,
- 5.Density matrix is useful even for the nSM neutrino oscillation.

Standard Model

Beyond the SM

Plans for the future:

1.SM calculation of the neutrino detection rates for new neutrino beams and detectors (superbeam, neutrino factory, beta beam and aqua, liquid scintillator, argon as a detector material).

2. Calculation of the neutrino detection rates for future experiments if neutrino production, oscillation inside matter and detection are described by New Physics (NP).

3. Search for the **bounds on the NP parameters** in the model independent effective Lagrangian from new existing experimental data.

4. Neutrino oscillation in new physics models (experimental and theoretical bounds on the oscillation parameters beyond the SM: supersymmetry, unparticles, new gauge bosons, new Higgses, extra dimensions).

Bhabha scattering

θ

Developing analytical tools for loop calculations

- Mbtools
- http://projects.hepforge.org/mbtools/

MB Tools

- Home
- Downloads
- Mailing list
- Tracker
- Wiki

This project is a collection of tools devoted to the evaluation of Mellin-Barnes integrals.

The project has been started by Michael Czakon; currently the web-page is also being updated by Alexander Smirnov.

The project is at the development stage, so expect more codes to appear here.

Currently the following codes can be downloaded:

 MB.m : version 1.2 of MB (last updated January 2nd, 2009) by Michal Czakon, the main collection of routines for the resolution of singularities and the numerical evaluation of Mellin-Barnes integrals;

for details see hep-ph/0511200;

the current version is documented in the Manual ;

the distribution contains two example notebooks, MBexamples1.nb and MBexamples2.nb;

 MBasymptotics.m : a routine which expands Mellin-Barnes integrals in a small parameter by Michal Czakon;

example usage is illustrated in MBasymptotics.nb;

- MBresolve.m : a tool by Alexander Smirnov and Vladimir Smirnov realizing another strategy of resolving singularities of Mellin-Barnes integrals. This code should be loaded together with MB.m since it uses some of its routines. For details see arXiv:0901.0386
- AMBRE.m : a tool by Janusz Gluza, Krzysztof Kajda and Tord Riemann for constructing Mellin-Barnes representations. It works both for planar multiloop scalar and one-loop tensor Feynman integrals. This is version 1.2, for previous versions and detailed description of the package with examples see the home

AMBRE still developing to include multiloop tensor integrals

- hexagon is a new package for the tensor reduction of one-loop 5-point and 6-point functions with rank R=3 and R=4, respectively; T.Diakonidis's talk
- CSectors is an interface for the package sector_decomposition by Bogner and Weinzierl and allows a convenient, direct evaluation of tensor Feynman integrals (still not published)

- We continue to work on many important aspects of particle physics
- We hope for further close and fruitful cooperation with EU scientists within the Heptools network,

